1184
B. Chatterjee et al. / Tetrahedron: Asymmetry 23 (2012) 1170–1185
K.; Schneekloth, J. S. Jr.; Kuramochi, K.; Crews, C. M. Org. Lett. 2006, 8, 427–430;
(g) Hangyou, M.; Ishiyama, H.; Takahashi, Y.; Kobayashi, J. Org. Lett. 2009, 11,
5046–5049; (h) Ko, H. M.; Lee, C. W.; Kwon, H. K.; Chung, H. S.; Choi, S. Y.;
(1:49) to yield an inseparable mixture of products 3 and 3a (1:1)
(0.017 g, 55% combined yield) as a colorless liquid. 1H NMR
(400 MHz, CDCl3): d 0.01 (s, 6H), 0.84 (d, 3H, J = 6.7 Hz), 0.87 (s,
9H), 1.18 (d, 1.5H, J = 6.9 Hz), 1.20 (d, 1.5H, J = 6.9 Hz) 1.38–1.53
(m, 7H), 1.77 (m, 1H), 2.14 (m, 1H), 2.28 (m, 1H), 3.28 (m, 1H),
3.53 (m, 1H), 3.59 (m, 1H), 4.58 (ABq, 2H, J = 12.3 Hz), 5.44–5.55
(m, 2H), 5.91 (ddd, 1H, J = 6.2, 9.4, 15.3 Hz), 7.30–7.36 (m, 5H);
13C NMR (100 MHz, CDCl3): ꢀ4.9, ꢀ4.4, 17.5, 17.9/18.2, 20.1/20.9,
25.9 (ꢃ 3), 28.3, 29.7/30.1, 30.3, 33.2, 34.0, 41.6/46.4, 70.6, 72.4,
73.1, 74.0, 127.4, 127.5, 127.6 (ꢃ 2), 128.2, 128.4, 138.1, 138.3,
175.5; EIMS: (M+Na)+ calcd for C27H44NaO4Si 483.29. Found:
483.24; Anal. Calcd for C27H44O4Si: C, 70.39; H, 9.63. Found: C,
70.44; H, 9.56.
´
Chung, Y. K.; Lee, E. Angew. Chem., Int. Ed. 2009, 48, 2364–2366; (i) Rodriguez-
Escrich, C.; Urpí, F.; Vilarrasa, J. Org. Lett. 2008, 10, 5191–5194.
9. Shimbo, K.; Tsuda, M.; Izui, N.; Kobayashi, J. J. Org. Chem. 2002, 67, 1020–
1023.
10. Mohapatra, D. K.; Chatterjee, B.; Gurjar, M. K. Tetrahedron Lett. 2009, 50, 755–
758.
11. (a) Ghosh, A. K.; Gong, G. J. Am. Chem. Soc. 2004, 126, 3704–3705; (b) Ghosh, A.
K.; Gong, G. J. Org. Chem. 2006, 71, 1085–1093.
12. Kierstead, R. W.; Faraone, A.; Mennona, F.; Mullin, J.; Guthrie, R. W.; Crowley,
H.; Simko, B.; Blaber, L. C. J. Med. Chem. 1983, 26, 1561–1569.
13. (a) Veyrieres, A. J. Chem. Soc., Perkin Trans. 1 1981, 1626–1629; (b) David, S.;
Hanessian, S. Tetrahedron 1985, 41, 643–663; (c) Boons, G-J.; Castle, G. H.;
Clase, J. A.; Grice, P.; Ley, S. V. Synlett 1993, 913–914.
14. (a) Gurjar, M. K.; Nagaprasad, R.; Ramana, C. V. Tetrahedron Lett. 2003, 44,
2873–2875; (b) Gurjar, M. K.; Nagaprasad, R.; Ramana, C. V.; Karmakar, S.;
Mohapatra, D. K. Arkivoc 2005, 237–257; (c) Couladouros, E. A.; Mihou, A. P.;
Bouzas, E. A. Org. Lett. 2004, 6, 977–980; (d) Va, P.; Roush, W. R. Tetrahedron
2007, 63, 5768–5796; (e) Fürstner, A.; Flügge, S.; Larionov, O.; Takahashi, Y.;
Kubota, T.; Kobayashi, J. Chem. Eur. J. 2009, 15, 4011–4029; (f) Fürstner, A. Isr. J.
Chem. 2011, 51, 329–345.
15. (a) Ho, G. J.; Mathre, D. J. J. Org. Chem. 1995, 60, 2271–2273; (b) Powell, N. A.;
Roush, W. R. Org. Lett. 2001, 3, 453–456; (c) Kamenecka, T. M.; Danishfesky, S.
Angew. Chem., Int. Ed. 1998, 37, 2995–2998.
16. Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737–
1739.
17. (a) Riley, R. G.; Silverstein, R. M.; Moser, J. C. Science 1974, 183, 760–762; (b)
Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141–6144.
18. Crimmins, M. T.; Mahony, R. O. ’. J. Org. Chem. 1989, 54, 1157–1161.
19. (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155–4156; (b) Dess, D. B.;
Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–7287.
20. Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127–
2129.
21. (a) Heathcock, C. H.; Pirrung, M. C.; Sohn, J. E. J. Org. Chem. 1979, 44, 4294–
4299; (b) Sulikowski, G. A.; Lee, W.-M.; Jin, B.; Wu, B. Org. Lett. 2000, 2, 1439–
1442.
22. Bauer, M.; Maier, M. E. Org. Lett. 2002, 4, 2205–2208.
23. Evans, D. A.; Rieger, D. L.; Jones, T. K.; Kaldor, S. W. J. Org. Chem. 1990, 55, 6260–
6268.
24. Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019–8022.
25. (a) Taber, D. F.; Jiang, Q.; Chen, B.; Zhang, W.; Campbell, C. L. J. Org. Chem. 2002,
67, 4821–4827; (b) Jiang, X.; Covey, D. F. J. Org. Chem. 2002, 67, 4893–
4900.
26. Crich, D.; Dudkin, V. J. Am. Chem. Soc. 2002, 124, 2263–2266.
27. Corey, E. J.; Gras, J-L.; Ulrich, P. Tetrahedron Lett. 1976, 23, 809–812.
28. Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 399–402.
29. RamaRao, A. V.; Bose, D. S.; Gurjar, M. K.; Ravindranathan, T. Tetrahedron 1989,
45, 7031–7040.
30. (a) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc.
Jpn. 1979, 52, 1989–1993; (b) Paterson, I.; Chen, D. Y-K.; Acena, J. L.; Franklin, A.
S. Org. Lett. 2000, 2, 1513–1516.
31. (a) Murga, J.; Falomir, E.; Garc´ıa-Fortanet, J.; Carda, M.; Marco, J. A. Org. Lett.
2002, 4, 3447–3449; (b) Hanessian, S.; Giroux, S.; Buffat, M. Org. Lett. 2005, 7,
3989–3992; (c) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed.
2005, 44, 4490–4527; (d) Gradillas, A.; Perez-Castells, J. Angew. Chem., Int. Ed.
2006, 45, 6086–6101; (e) Xuan, R.; Oh, H.; Lee, Y.; Kang, H. J. Org. Chem. 2008,
73, 1456–1461.
4.1.35. (3S,6R,7R,12S,E)-12-(Benzyloxymethyl)-6-(tert-butyldi-
methylsilyloxy)-3,7-dimethyloxacyclododec-10-en-2-one 3
Ethoxyacetylene (0.03 mL, 40% in hexane, 0.14 mmol) was
added to a solution of the seco acid 5 (0.045 g, 0.094 mmol) and
[{RuCl2(p-cymene)}2] (1.2 mg, 0.0018 mmol) in toluene (8 mL) at
0 °C. The resulting mixture was warmed to room temperature
and stirred for another 30 min. The dark red solution was then fil-
tered through a pad of silica gel, and the silica gel was washed with
dry Et2O (60 mL) under a nitrogen atmosphere. The filtrate was
then concentrated under reduced pressure. The crude ethoxyvinyl
ester was dissolved in toluene (5 mL) and added to a solution of
CSA (2.2 mg, 0.0094 mmol) in toluene (20 mL) and heated to
50 °C for 2 h. The mixture was filtered through a pad of silica gel
and concentrated to afford a residue which was purified by flash
silica gel chromatography eluting with EtOAc and light petroleum,
(1:49) to give lactone 3 (0.018 g, 42%) as a colorless liquid.
½
a 2D5
ꢁ
¼ þ29:0 (c 0.6, CHCl3); IR (CHCl3): 2929, 1722, 1598, 1384,
1255, 1115, 1026, 772, 618; 1H NMR (500 MHz, CDCl3): d 0.01 (s,
6H), 0.85 (d, 3H, J = 6.7 Hz), 0.87 (s, 9H), 1.18 (d, 3H, J = 6.9 Hz),
1.36–1.42 (m, 2H), 1.49–1.57 (m, 5H), 1.75 (m, 1H), 2.14 (m, 1H),
2.26 (m, 1H), 3.28 (m, 1H), 3.57 (dd, 1H, J = 4.4, 10.8 Hz), 3.61
(dd, 1H, J = 6.7, 10.8 Hz), 4.58 (ABq, 2H, J = 12.4 Hz), 5.44–5.53
(m, 2H), 5.91 (ddd, 1H, J = 6.2, 9.4, 15.5 Hz), 7.28–7.35 (m, 5H);
13C NMR (125 MHz, CDCl3): d ꢀ4.9, ꢀ4.4, 17.5, 17.8, 18.2, 26.0
(ꢃ 3), 28.4, 30.2, 30.4, 33.3, 34.1, 41.7, 70.7, 72.4, 73.2, 74.0,
127.4 (ꢃ 2), 127.5, 127.6 (ꢃ 2), 128.4, 138.2, 138.3, 175.4;
EIMS: (M+Na)+ calcd for C27H44NaO4Si+ 483.29. Found: 483.24;
Anal. Calcd for C27H44O4Si: C, 70.39; H, 9.63. Found: C, 70.34; H,
9.55.
32. (a) Grubbs, R. H.; Pine, S. H. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Paquette, L. A., Eds.; Permagon: New York, 1997; Vol. 5,. Chapter 9.3
(b) Schrock, R. R. in The Strem Chemiker 1992, XIV(1), 1–6; (c) Ivin, K. J.; Mol, J. C.
Olefin Metathesis and Metathesis Polymerization; Academic Press: San Deigo,
1997.
33. Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl.
1995, 34, 2039–2041.
34. (a) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999,
40, 2247–2250; (b) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999,
1, 953–956.
Acknowledgments
BC thanks UGC, New Delhi, India, for financial assistance
and authors immensely acknowledge Dr. Mukund K. Gurjar and
Dr. Debendra K. Mohapatra for their kind support for this
synthesis.
35. Crimmins, M. T.; Choy, A. L. J. Org. Chem. 1997, 62, 7548–7549.
36. (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512–519; (b) Sullivan, G.
R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 38, 2143–2147.
37. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113,
4092–4096.
38. Nicolaou, K. C.; Ray, M.; Finlay, V.; Ninkovic, S.; Sarabia, F. Tetrahedron 1998, 54,
7127–7166.
39. Kido, F.; Tsutsumi, K.; Maruta, R.; Yoshikoshi, A. J. Am. Chem. Soc. 1979, 101,
6420–6424.
References
1. Poore, G. C. B.; Wilson, G. D. F. Nature 1993, 361, 597–598.
2. de Vries, D. J.; Hall, M. R. Drug Dev. Res. 1994, 33, 161–173.
3. Cowan, D. A. Trends Biotechnol. 1997, 15, 129–131.
4. Jaspers, M. In Drug Discovery Techniques; Harvey, A. L., Ed.; Wiley, 1998; pp 65–
84.
5. Harvey, A. Drug Discovery Today 2000, 5, 294–300.
6. Staley, J. T.; Gosink, J. J. Annu. Rev. Microbiol. 1999, 53, 189–215.
7. (a) Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77–93; (b) Kobayashi, J.;
Shimbo, K.; Kubota, T.; Tsuda, M. Pure Appl. Chem. 2003, 75, 337–342.
8. (a) Marshall, J. A.; Schaff, G.; Nolting, A. Org. Lett. 2005, 7, 5331–5333; (b) Jin, J.;
Chen, Y.; Wu, J.; Dai, W. Org. Lett. 2007, 9, 2585–2588; (c) Kim, C. H.; An, H. J.;
Shin, W. K.; Yu, W.; Woo, S. K.; Jung, S. K.; Lee, E. Angew. Chem., Int. Ed. 2006, 45,
8019–8021; (d) Lepage, O.; Kattnig, E.; Furstner, A. J. Am. Chem. Soc. 2004, 126,
15970–15971; (e) Va, P.; Roush, W. R. Org. Lett. 2007, 9, 307–310; (f) Mandal, A.
40. Mitsunobu, O. Synthesis 1981, 1–28.
41. Schultz, H. S.; Freyermuth, H. B.; Buc, S. R. J. Org. Chem. 1963, 28, 1140–
1142.
42. Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 26–
28.
43. Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563–2585.
44. Takeuchi, T.; Kuramochi, K.; Kobayashi, S.; Sugawara, F. Org. Lett. 2006, 8,
5307–5310.