C.D. Reed et al. / Journal of Fluorine Chemistry 143 (2012) 231–237
237
(c) R. Bejot, A.M. Elizarov, E. Ball, J. Zhang, R. Miraghaie, H.C. Kolb, V. Gouverneur,
Journal of Labelled Compounds and Radiopharmaceuticals 54 (2011) 117–122;
(d) P.W. Miller, Journal of Chemical Technology and Biotechnology 84 (2009)
309–315;
[10] During the course of this study the radiofluorination of diaryliodonium salts
has been reported using the Advion NanoTek microfluidic system using
Kryptofix1 222/K2CO3 at concentrations similar to PTS-1. See references
[7c,7h,7k].
(e) H. Audrain, Angewandte Chemie International Edition 46 (2007) 1772–1775.
[3] For examples of blockages in microreactors see:
[11] P.A. Culbert, M.J. Adam, E.T. Hurtado, J.M.A. Huser, S. Jivan, J. Lu, T.J. Ruth, S.K.
Zeisler, Applied Radiation and Isotopes 46 (1995) 887–891.
[12] (a) G.A. Jeffrey, R.K. McMullan, in: F.A. Cotton (Ed.), Progress in Inorganic
Chemistry, vol. 8, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1967, pp. 43–108;
(b) L.S. Aladko, Y.A. Dyadin, T.V. Rodionova, I.S. Terekhova, Journal of Molecular
Liquids 106 (2003) 229–238.
(a) C. Amador, A. Gavriilidis, P. Angeli, Chemical Engineering Journal 101 (2004)
379–390;
(b) Y. Tanaka, O. Tonomura, K. Isozaki, S. Hasebe, Chemical Engineering Journal
167 (2011) 483–489.
[4] S.E. Snyder, M.R. Kilbourn, in: M.J. Welch, C.S. Redvanly (Eds.), Handbook of
[13] S.J. Gatley, R.D. Hichwa, W.J. Shaughnessy, R.J. Nickles, The International Journal
of Applied Radiation and Isotopes 32 (1981) 211–214.
[14] A.L. Bosch, T.R. Degrado, S.J. Gatley, International Journal of Radiation Applica-
tions and Instrumentation – Part A: Applied Radiation and Isotopes 37 (1986)
305–308.
Radiopharmaceuticals: Radiochemistry and Applications, John Wiley
Ltd., Chichester, UK, 2003, pp. 195–227.
& Sons
[5] For examples see:
(a) L.Cai,S.Lu, V.W. Pike, European JournalofOrganic Chemistry(2008)2853–2873;
(b) P.W. Miller, N.J. Long, R. Vilar, A.D. Gee, Angewandte Chemie International
Edition 47 (2008) 8998–9033;
(c) L. Hoigebazar, J.M. Jeong, J.-Y. Lee, D. Shetty, B.Y. Yang, Y.-S. Lee, D.S. Lee, J.-K.
Chung, M.C. Lee, Journal of Medicinal Chemistry 55 (2012) 3155–3162;
(c) E. Lee, A.S. Kamlet, D.C. Powers, C.N. Neumann, G.B. Boursalian, T. Furuya, D.C.
Choi, J.M. Hooker, T. Ritter, Science 334 (2011) 639–642;
(d) H. Teare, E.G. Robins, A. Kirjavainen, S. Forsback, G. Sandford, O. Solin, S.K. Luthra,
V. Gouverneur, Angewandte Chemie International Edition 49 (2010) 6821–6824;
(e) B. Wa¨ngler, G. Quandt, L. Iovkova, E. Schirrmacher, C. Wa¨ngler, G. Boening, M.
Hacker, M. Schmoeckel, K. Jurkschat, P. Bartenstein, R. Schirrmacher, Bioconjugate
Chemistry 20 (2009) 317–321.
[15] L.G. Hutchins, A.L. Bosch, M.S. Rosenthal, R.J. Nickles, S.J. Gatley, The International
Journal of Applied Radiation and Isotopes 36 (1985) 375–378.
[16] Tetraethylammonium bicarbonate is commercially available: Sigma-Aldrich, cat.
[17] (a) T.C.W. Mak, Journal of Inclusion Phenomena 3 (1985) 347–354;
(b) T.C.W. Mak, H.J. Bruins Slot, P.T. Beurskens, Journal of Inclusion Phenomena 4
(1986) 295–302.
[18] The efficiency of the elution of radioactivity from the QMA cartridge took into
account potential losses in the apparatus/process. The initial level of adsorption of
the [18F]fluoride from the cyclotron produced [18O]H2O onto the QMA cartridge
was determined by analysis of the recovered [18O]H2O and the radioactivity
remaining in the original supply vial. The result was also corrected in light of any
residual radioactivity on the QMA cartridge.
[6] (a) S. Martı´n-Santamarı´a, M.A. Carroll, C.M. Carroll, C.D. Carter, V.W. Pike, H.S.
Rzepa, D.A. Widdowson, Chemical Communications (2000) 649–650;
(b) M.A. Carroll, L.M. Kamara, D.A. Widdowson, V.W. Pike, Journal of Labelled
Compounds and Radiopharmaceuticals 48 (2005) 519–520;
(c) M.A. Carroll, J. Nairne, G. Smith, D.A. Widdowson, Journal of Fluorine Chem-
istry 128 (2007) 127–132;
[19] Precursor concentrations of 5–10 mg/mL are suitable for a range of diaryliodo-
nium precursors, we have observed precipitation of some precursors at concen-
tration ꢃ30 mg/mL.
[20] The variation between batches of [18F]fluoride has been noted by other research-
ers, for example see: G. Pascali, L. D’Antonio, P. Bovone, P. Gerundini, T. August,
Nuclear Medicine and Biology, 36 (2009) 569–574.
(d) M.A. Carroll, J. Nairne, J.L. Woodcraft, Journal of Labelled Compounds and
Radiopharmaceuticals 50 (2007) 452–454;
(e) R. Yan, M.A. Carroll, Journal of Labelled Compounds and Radiopharmaceu-
ticals 51 (2008) 259–260;
[21] E. Blom, F. Karimi, B. La˚ ngstro¨m, Journal of Labelled Compounds and Radio-
pharmaceuticals 52 (2009) 504–511.
(f) M. Carroll, R. Yan, F. Aigbirhio, D. Soloviev, L. Brichard, Journal of Nuclear
Medicine 49 (2008) 298P;
(g) M. Carroll, R. Yan, F. Aigbirhio, D. Soloviev, L. Brichard, Journal of Nuclear
Medicine 49 (2008) 303P.
[22] For examples of fluorine in medicinal chemistry see:
(a) I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, John Wiley &
Sons Ltd., Chichester, UK, 2009;
(b) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chemical Society Reviews 37
(2008) 320–330;
[7] For selected examples see:
(a) T.L. Ross, J. Ermert, C. Hocke, H.H. Coenen, Journal of the American Chemical
Society 129 (2007) 8018–8025;
(b) M.-R. Zhang, K. Kumata, K. Suzuki, Tetrahedron Letters 48 (2007) 8632–8635;
(c) J.-H. Chun, S. Lu, Y.-S. Lee, V.W. Pike, Journal of Organic Chemistry 75 (2010)
3332–3338;
(c) D. O’Hagan, Journal of Fluorine Chemistry 131 (2010) 1071–1081;
(d) W.K. Hagmann, Journal of Medicinal Chemistry 51 (2008) 4359–4369.
[23] C. Lemaire, R. Cantineau, M. Guillaume, A. Plenevaux, L. Christiaens, Journal of
Nuclear Medicine 32 (1991) 2266–2272.
[24] D. Le Bars, C. Lemaire, N. Ginovart, A. Plenevaux, J. Aerts, C. Brihaye, W. Hassoun, V.
Leviel, P. Mekhsian, D. Weissmann, J.F. Pujol, A. Luxen, D. Comar, Nuclear Medi-
cine and Biology 25 (1998) 343–350.
(d) S. Telu, J.-H. Chun, F.G. Sime´on, S. Lu, V.W. Pike, Organic & Biomolecular
Chemistry 9 (2011) 6629–6638;
(e) F. Basuli, H. Wu, G.L. Griffiths, Journal of Labelled Compounds and Radio-
pharmaceuticals 54 (2011) 224–228;
[25] J. Blin, S. Pappata, M. Kiyosawa, C. Crouzel, J.C. Baron, European Journal of
Pharmacology 147 (1988) 73–82.
(f) T.L. Ross, J. Ermert, H.H. Coenen, Molecules 16 (2011) 7621–7626;
(g) B. Wang, R.L. Cerny, S. Uppaluri, J.J. Kempinger, S.G. DiMagno, Journal of
Fluorine Chemistry 131 (2010) 1113–1121;
(h) J.-H. Chun, V.W. Pike, Journal of Labelled Compounds and Radiopharmaceu-
ticals 54 (2011) S482;
(i) D. Zimmerman, T.L. Ross, Journal of Labelled Compounds and Radiopharma-
ceuticals 54 (2011) S488;
(j) K.D. Neumann, A. Vavere, S. Snyder, S.G. DiMagno, Journal of Labelled Com-
pounds and Radiopharmaceuticals 54 (2011) S492;
[26] (a) D.B. Dess, J.C. Martin, Journal of the American Chemical Society 113 (1991)
7277–7287;
(b) H. Tohma, S. Takizawa, T. Maegawa, Y. Kita, Angewandte Chemie Interna-
tional Edition 39 (2000) 1306–1308.
[27] P. Tang, T. Furuya, T. Ritter, Journal of the American Chemical Society 132 (2010)
12150–21254.
[28] H. Togo, T. Nabana, K. Yamaguchi, Journal of Organic Chemistry 65 (2000) 8391–
8394.
[29] For example fluorobenzene and 2-fluorothiophene have boiling points lower than
the reaction temperature and may therefore be lost from an open system, see:
M.A. Carroll, C. Jones, S.-L. Tang, Journal of Labelled Compounds and Radio-
pharmaceuticals, 50 (2007) 450–451.
(k) G. Pascali, S. Pitzianti, G. Saccomani, S. Del Carlo, C. Manera, M. Macchia, P.A.
Salvadori,Journalof LabelledCompoundsandRadiopharmaceuticals54(2011) S502.
[31] This temperature range was selected as it was found that limited reaction was
evident at the lower temperatures and the maximum operating temperature of
the Advion NanoTek Microfluidic System was 200 8C.
[9] Advion NanoTek LF 07-08 User Manual; Appendix A. [18F]Fluoride ion prepara-
tion; Kryptofix1 222 (30 mg/mL) and K2CO3 (5.5 mg/mL) in MeCN/H2O
(9:1, v/v).