ORGANIC
LETTERS
2012
Vol. 14, No. 23
5900–5903
A Switchable Ferrocene-Based
[1]Rotaxane with an Electrochemical
Signal Output
Hong Li, Hui Zhang, Qiong Zhang, Qi-Wei Zhang, and Da-Hui Qu*
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China
University of Science & Technology, Shanghai 200237, P. R. China
Received October 14, 2012
ABSTRACT
A [1]rotaxane, in which a linear rod is attached to one cyclopentadienyl (Cp) ring of a ferrocene unit and threaded into a dibenzo-24-crown-8
connected to the other Cp ring, was prepared. The mechanical motion of the rod-like part relative to the macrocycle has been demonstrated using
1H NMR spectroscopy. Cyclic voltammetry (CV) showed that the system can be chemically switched between electrochemically reversible and
irreversible states, depending on the inclusion and exclusion of the ammonium/amine group from the macrocycle.
Bistable rotaxanes, as the most common species of me-
chanically interlocked molecules (MIMs),1 have received con-
siderable attention because of their applications in molecular
devices and as components of molecular machinery.1ꢀ3
Until now, there has been much work aimed at the design
and construction of multifunctional [2]rotaxanes4 with two
distinguishable states that can be recognized by various
output signals, such as UV/vis absorption,4,5 fluorescence,5,6
electrochemical signals,7 and circular dichroism.8
(1) (a) Kinbara, K.; Aida, T. Chem. Rev. 2005, 105, 1377. (b) Browne,
W. R.; Feringa, B. L. Nat. Nanotechnol. 2006, 1, 25. (c) Tian, H.; Wang,
Q.-C. Chem. Soc. Rev. 2006, 35, 361. (d) Kay, E. R.; Leigh, D. A.;
Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72. (e) Champin, B.; Ulla,
L.-H.; Sauvage, J.-P. Intelligent Materials 2007, 76. (f) Saha, S.;
Stoddart, J. F. Chem. Soc. Rev. 2007, 36, 77. (g) Champin, B.; Mobian,
P.; Sauvage, J.-P. Chem. Soc. Rev. 2007, 36, 358. (h) Balzani, V.; Credi,
A.; Venturi, M. Molecular Devices and Machines - Concepts and Per-
spectives for the Nanoworld; Wiley-VCH: Weinheim, 2008. (i) Puddephatt,
R. J. Chem. Soc. Rev. 2008, 37, 2012. (j) Mullen, K. M.; Beer, P. D. Chem.
Soc. Rev. 2009, 38, 1701. (k) Balzani, V.; Credi, A.; Venturi, M. Chem.
Soc. Rev. 2009, 38, 1542. (l) Jiang, Q.; Zhang, H. Y.; Han, M.; Ding,
Z.-J.; Liu, Y. Org. Lett. 2010, 12, 1728. (m) Qu, D.-H.; Tian, H. Chem.
Sci. 2011, 2, 1011.
(2) (a) O’Brien, Z. J.; Karlen, S. D.; Khan, S.; Garcia-Garibay, M. A.
J. Org. Chem. 2010, 75, 2482. (b) Ma, X.; Tian, H. Chem. Soc. Rev. 2010,
39, 70. (c) Kobr, L.; Zhao, K.; Shen, Y.-Q.; Comotti, A.; Bracco, S.;
Shoemaker, R. K.; Sozzani, P.; Clark, N. A.; Price, J. C.; Rogers, C. T.;
Michl, J. J. Am. Chem. Soc. 2012, 134, 10122.
(3) (a) Crowley, J. D.; Leigh, D. A.; Lusby, P. J.; McBurney, R. T.;
Perret-Aebi, L. E.; Petzold, C.; Slawin, A. M. Z.; Symes, M. D. J. Am.
Chem. Soc. 2007, 129, 15085. (b) Saha, S.; Flood, A. H.; Stoddart, J. F.;
Impellizzeri, S.; Silvi, S.; Venturi, M.; Credi, A. J. Am. Chem. Soc. 2007,
129, 12159. (c) Fioravanti, G.; Haraszkiewicz, N.; Kay, E. G.; Mendoza,
S. M.; Bruno, C.; Marcaccio, M.; Wiering, P. G.; Paolucci, F.; Rudolf,
P.; Brouwer, A. M.; Leigh, D. A. J. Am. Chem. Soc. 2008, 130, 2593. (d)
Coskun, A.; Friedman, D. C.; Li, H.; Patel, K.; Khatib, H. A.; Stoddart,
J. F. J. Am. Chem. Soc. 2009, 131, 2493. (e) Mateo-Alonso, A. Chem.
Commun. 2010, 46, 9089. (f) Dasgupta, S.; Wu, J. S. Chem. Sci. 2012, 3,
425.
(4) (a) Kihara, N.; Hashimoto, M.; Takata, T. Org. Lett. 2004, 6,
1693. (b) Qu, D.-H.; Wang, Q.-C.; Tian, H. Angew. Chem., Int. Ed. 2005,
44, 5296. (c) Wang, Q.-C.; Ma, X.; Qu, D.-H.; Tian, H. Chem.;Eur. J.
2006, 12, 1088. (d) Ji, F.-Y.; Zhu, L.-L.; Zhang, D.; Chen, Z.-F.; Tian, H.
Tetrahedron 2009, 65, 9081. (e) Yang, W.-L.; Li, Y.-J.; Zhang, J.-H; Yu,
Y.-W.; Liu, T.-F.; Liu, H.-B.; Li, Y.-L. Org. Biomol. Chem. 2011, 9, 6022.
(5) (a) Qu, D.-H.; Feringa, B. L. Angew. Chem., Int. Ed. 2010, 49, 1107.
(b) Olsen, J.-C.; Fahrenbach, A. C.; Trabolsi, A.; Friedman, D. C.; Dey,
S. K.; Gothard, C. M.; Shveyd, A. K.; Gasa, T. B.; Spruell, J. M.; Olson,
M. A.; Wang, C.; Jacquot de Rouville, H.-P.; Botros, Y. Y.; Stoddart, J. F.
Org. Biomol. Chem. 2011, 9, 7126. (c) Yao, Y.; Xue, M.; Chi, X.-D.; Ma,
Y.-J.; He, J.-M.; Abliz, Z.; Huang, F.-H. Chem. Commun. 2012, 6505. (d)
Yu, G.-C.; Han, C.-Y.; Zhang, Z.-B.; Chen, J.-Z.; Yan, X.-Z.; Zheng, B.;
Liu, S.-Y.; Huang, F.-H. J. Am. Chem. Soc. 2012, 134, 8711.
(6) (a) Qu, D.-H.; Wang, Q.-C.; Ren, J.; Tian, H. Org. Lett. 2004, 6,
2085. (b) Mateo-Alonso, A.; Guldi, D. M.; Paolucci, F.; Prato, M.
Angew. Chem., Int. Ed. 2007, 46, 8120. (c) Pan, X.-Y.; Li, H.; Nguyen,
€
K. T.; Gruner, G.; Zhao, Y.-L. J. Phys. Chem. C 2012, 116, 4175.
(7) (a) Wang, X.-B.; Dai, B.; Woo, H.-K.; Wang, L.-S. Angew.
Chem., Int. Ed. 2005, 44, 6022. (b) Zhang, D.; Zhang, Q.; Sua, J.-H.;
Tian, H. Chem. Commun. 2009, 1700. (c) Ly, H. V.; Moilanen, J.;
Tuononen, H. K.; Parvez, M.; Roesler, R. Chem. Commun. 2011, 47,
8391. (d) Iordache, A.; Oltean, M.; Milet, A.; Thomas, F.; Baptiste, B.;
Saint-Aman, E.; Bucher, C. J. Am. Chem. Soc. 2012, 134, 2653. (e)
Scarel, F.; Valenti, G.; Gaikwad, S.; Marcaccio, M.; Paolucci, F.;
Mateo-Alonso, A. Chem.;Eur. J. 2012, 18, 14063.
r
10.1021/ol302826g
Published on Web 11/12/2012
2012 American Chemical Society