Dalton Transactions
Paper
X-ray data collection and structure solution refinement
P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden,
A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek,
L. C. Seefeldt, R. K. Thauer and G. L. Waldrop, Chem. Rev.,
2013, 113, 6621–6658.
4 J. A. Turner, Science, 2004, 305, 972–974.
5 Carbon Dioxide as Chemical Feedstock, ed. M. Aresta, Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010.
6 W. Wang, S. Wang, X. Ma and J. Gong, Chem. Soc. Rev.,
2011, 40, 3703.
7 P. G. Jessop, F. Joó and C.-C. Tai, Coord. Chem. Rev., 2004,
248, 2425–2442.
8 C. Costentin, M. Robert and J.-M. Saveant, Chem. Soc. Rev.,
2013, 42, 2423–2436.
9 F. N. Büchi, M. Hofer, C. Peter, U. D. Cabalzar, J. Bernard,
U. Hannesen, T. J. Schmidt, A. Closset and P. Dietrich, RSC
Adv., 2014, 4, 56139–56146.
10 D. R. Kauffman, J. Thakkar, R. Siva, C. Matranga,
P. R. Ohodnicki, C. Zeng and R. Jin, ACS Appl. Mater.
Interfaces, 2015, 7, 15626–15632.
11 J. D. Froehlich and C. P. Kubiak, J. Am. Chem. Soc., 2015,
137, 3565–3573.
12 M. Rakowski Dubois and D. L. Dubois, Acc. Chem. Res.,
2009, 42, 1974–1982.
Single crystals suitable for X-ray structure analysis were coated
with Paratone N oil, mounted on a fiber loop and placed in a
cold N2 stream on the diffractometer. A Bruker D8 Venture
diffractometer performing φ and ω scans at 100(2) K was used
to collect diffraction data for 3. Intensities were measured
using graphite-monochromatic MoKα radiation (λ = 0.71073 Å).
The crystal used in the diffraction experiment was a pseudo-mer-
ohedral twin with relative domain volumes of 0.576(4) : 0.424(4).
The structure was solved by intrinsic phasing;37 a difference
Fourier synthesis revealed disorder for the cationic complex, a
counter anion and the solvent region. The final structure model
was refined on F2.37 Two conformations of the macrocyclic ligand
involve disorder of the ethylene versus propylene bridges. A per-
chlorate anion was treated as disordered over two edge-sharing
alternative orientations. The sum of the occupancies for three
mutually exclusive sites of the solvent water molecule was
restrained to unity. All hydrogen atoms were introduced at
their idealized positions and refined using a riding model.
Crystallographic data as well as refinement parameters are pre-
sented in Table S2 in the ESI.†
13 A. A. Peterson and J. K. Nørskov, J. Phys. Chem. Lett., 2012,
3, 251–258.
Conflicts of interest
14 A. A. Peterson, ECS Trans., 2015, 66, 41–52.
15 F. Möller, S. Piontek, R. G. Miller and U.-P. Apfel, Chem. –
Eur. J., 2018, 24, 1471–1493.
There are no conflicts to declare.
16 J. Qiao, Y. Liu, F. Hong and J. Zhang, Chem. Soc. Rev., 2014,
43, 631–675.
Acknowledgements
17 J. Qiao, Y. Liu and J. Zhang, Electrochemical Reduction of
Carbon Dioxide, CRC Press Taylor & Francis Group, 1st edn,
2016.
18 M. Beley, J. P. Collin, R. Ruppert and J. P. Sauvage, J. Am.
Chem. Soc., 1986, 108, 7461–7467.
19 J. D. Froehlich and C. P. Kubiak, Inorg. Chem., 2012, 51,
3932–3934.
20 K. Bujno, R. Bilewicz, L. Siegfried and T. A. Kaden,
J. Electroanal. Chem., 1998, 445, 47–53.
This work was supported by the Fonds of the Chemical
Industry (Liebig grant to U.-P. A. and Kekulé fellowship to
P. G.) and the Deutsche Forschungsgemeinschaft (Emmy
Noether grant to U.-P. A., AP242/2-1 and AP242/5-1). K.R.
thanks financial support from the DFG (Cluster of Excellence
“Unifying Concepts in Catalysis”; EXC 314-2, and the
Heisenberg-Program). XAS studies at SSRL BL 9-3 were made
possible by the US DOE Office of Science (Contract No.
DE-AC02-76SF00515) and US NIH (P41-GM-103393 to SSRL SMB
Program and P30-EB-009998 to CWRU Center for Synchrotron
Biosciences). This work was supported by the Fraunhofer
Internal Programs under Grant No. Attract 097-602175.
21 I. Zilbermann, M. Winnik, D. Sagiv, A. Rotman, H. Cohen
and D. Meyerstein, Inorg. Chim. Acta, 1995, 240, 503–
514.
22 E. Fujita, J. Haff, R. Sanzenbacher and H. Elias, Inorg.
Chem., 1994, 33, 4627–4628.
23 H. Dobbek, V. Svetlitchnyi, L. Gremer, R. Huber and
O. Meyer, Science, 2001, 293, 1281–1285.
References
1 R. A. Eggleton, A short introduction to climate change, 24 W. Lubitz, H. Ogata, O. Rüdiger and E. Reijerse, Chem.
Cambridge University Press, Cambridge; Port Melbourne,
Vic, 2012.
2 E. J. Dlugokencky, P. M. Lang, J. W. Mund, A. M. Crotwell,
M. J. Crotwell and K. W. Thoning, Atmospheric Carbon
Rev., 2014, 114, 4081–4148.
25 J. Esselborn, N. Muraki, K. Klein, V. Engelbrecht,
N. Metzler-Nolte, U.-P. Apfel, E. Hofmann, G. Kurisu and
T. Happe, Chem. Sci., 2016, 7, 959–968.
Dioxide Dry Air Mole Fractions from the NOAA 26 B. C. Westerby, K. L. Juntunen, G. H. Leggett, V. B. Pett,
ESRL Carbon Cycle Cooperative Global Air Sampling
Network.
3 A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek,
M. J. Koenigbauer, M. D. Purgett, M. J. Taschner,
L. A. Ochrymowycz and D. B. Rorabacher, Inorg. Chem.,
1991, 30, 2109–2120.
D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, 27 L. Siegfried and T. A. Kaden, Dalton Trans., 2005, 1136.
This journal is © The Royal Society of Chemistry 2019
Dalton Trans.