Journal of Medicinal Chemistry
Brief Article
S. J.; Singh, A. J.; Jimenez-Barbero, J.; Miller, J. H.; Lopez, J. A.; Hamel,
E.; Barasoain, I.; Altmann, K. H.; Diaz, J. F. Zampanolide, a potent new
microtubule-stabilizing agent, covalently reacts with the taxane luminal
site in tubulin alpha,beta-heterodimers and microtubules. Chem. Biol.
2012, 19, 686−698.
(13) Bagnato, J. D.; Eilers, A. L.; Horton, R. A.; Grissom, C. B.
Synthesis and characterization of a cobalamin−colchicine conjugate as a
novel tumor-targeted cytotoxin. J. Org. Chem. 2004, 69, 8987−8996.
(14) Ravelli, R. B.; Gigant, B.; Curmi, P. A.; Lachkar, S.; Sobel, A.;
Knossow, M. Insight into tubulin regulation from a complex with
colchicine and a stathmin-like domain. Nature 2004, 428, 198−202.
(15) Das, L.; Datta, A. B.; Gupta, S.; Poddar, A.; Sengupta, S.; Janik, M.
E.; Bhattacharyya, B. -NH-dansyl isocolchicine exhibits a significantly
improved tubulin-binding affinity and microtubule inhibition in
comparison to isocolchicine by binding tubulin through its A and B
rings. Biochemistry 2005, 44, 3249−3258.
(16) Barron, D. M.; Chatterjee, S.; Ravindra, R.; Roof, R.; Baloglu, E.;
Kingston, D. G.; Bane, S. A fluorescence-based high-throughput assay
for antimicrotubule drugs. Anal. Biochem. 2003, 315, 49−56.
(17) Tateishi, T.; Soucek, P.; Caraco, Y.; Guengerich, F. P.; Wood, A. J.
Colchicine biotransformation by human liver microsomes. Identifica-
tion of CYP3A4 as the major isoform responsible for colchicine
demethylation. Biochem. Pharmacol. 1997, 53, 111−116.
(18) Dvorak, Z.; Modriansky, M.; Pichard-Garcia, L.; Balaguer, P.;
Vilarem, M. J.; Ulrichova, J.; Maurel, P.; Pascussi, J. M. Colchicine down-
regulates cytochrome P450 2B6, 2C8, 2C9, and 3A4 in human
hepatocytes by affecting their glucocorticoid receptor-mediated
regulation. Mol. Pharmacol. 2003, 64, 160−169.
Present Addresses
⊥Fox Cancer Center, 333 Cottman Avenue, 19111, Philadelphia,
PA, U.S.
#Faculty of Pharmacy, Taif University, Taif, Al-Haweiah, P.O.
Box 888, Taif 21974, Saudi Arabia.
∞Department of Medicinal Chemistry, Faculty of Pharmacy,
Assiut University, 71515 Assiut, Arab Republic of Egypt.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
K.P. was supported by YCR Program Grant, EPSRC Science
Bridge (Grant EP/G042365/1), FCT (Grant SFRH/BD/
46871/2008) and J.F.D. by Grant BIO2010-16351 from
Ministerio de Economia y Competitividad and Grant S2010/
BMD-2457 BIPEDD2 from Comunidad Auton
Spain. Parental HeLa and transfected β-III cervix carcinoma cell
lines were a kindly gift from Prof. Richard F. Luduena
(Biochemical Dept., The University of Texas Health Science
Center, TX, U.S.). We thank the EPSRC NMSSC for HRMS
data.
́
oma de Madrid,
̃
ABBREVIATIONS USED
DAPI, 4′,6-diamidino-2-phenylindole; DMEM, Dulbecco’s
modified Eagle medium; MAP, microtubule-associated protein
■
(19) Deeken, J. F.; Robey, R. W.; Shukla, S.; Steadman, K.;
Chakraborty, A. R.; Poonkuzhali, B.; Schuetz, E. G.; Holbeck, S.;
Ambudkar, S. V.; Bates, S. E. Identification of compounds that correlate
with ABCG2 transporter function in the National Cancer Institute
Anticancer Drug Screen. Mol. Pharmacol. 2009, 76, 946−956.
(20) Stengel, C.; Newman, S. P.; Leese, M. P.; Potter, B.; Reed, M. J.;
Purohit, A. Class III beta-tubulin expression and in vitro resistance to
microtubule targeting agents. Br. J. Cancer 2010, 102, 316−324.
(21) Joe, P. A.; Banerjee, A.; Luduena, R. F. The roles of cys124 and
ser239 in the functional properties of human betaIII tubulin. Cell Motil.
Cytoskeleton 2008, 65, 476−486.
(22) Risinger, A. L.; Jackson, E. M.; Polin, L. A.; Helms, G. L.; LeBoeuf,
D.; Joe, P.; Luduena, R. F.; Kruh, G. D.; Mooberry, S. L. The
taccalonolides: microtubule stabilizers that circumvent clinically
relevant taxane resistance mechanisms. Cancer Res. 2008, 68, 8881−
8888.
(23) Jackson, J. R.; Patrick, D. R.; Dar, M. M.; Huang, P. S. Targeted
anti-mitotic therapies: Can we improve on tubulin agents? Nat. Rev.
Cancer 2007, 7, 107−117.
(24) Pors, K.; Loadman, P. M.; Shnyder, S. D.; Sutherland, M.;
Sheldrake, H. M.; Guino, M.; Kiakos, K.; Hartley, J. A.; Searcey, M.;
Patterson, L. H. Modification of the duocarmycin pharmacophore
enables CYP1A1 targeting for biological activity. Chem. Commun.
(Cambridge, U. K.) 2011, 47, 12062−12064.
(25) Pors, K.; Shnyder, S. D.; Teesdale-Spittle, P. H.; Hartley, J. A.;
Zloh, M.; Searcey, M.; Patterson, L. H. Synthesis of DNA-directed
pyrrolidinyl and piperidinyl confined alkylating chloroalkylaminoan-
thraquinones: potential for development of tumor-selective N-oxides. J.
Med. Chem. 2006, 49, 7013−7023.
(26) Williams, R. C., Jr.; Lee, J. C. Preparation of tubulin from brain.
Methods Enzymol. 1982, 85 (Part B), 376−385.
(27) Shnyder, S. D.; Cooper, P. A.; Millington, N. J.; Pettit, G. R.;
Bibby, M. C. Auristatin PYE, a novel synthetic derivative of dolastatin 10,
is highly effective in human colon tumour models. Int. J. Oncol. 2007, 31,
353−360.
REFERENCES
■
(1) Zhao, Y.; Fang, W. S.; Pors, K. Microtubule stabilising agents for
cancer chemotherapy. Expert Opin. Ther. Pat. 2009, 19, 607−622.
(2) Szakacs, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.;
Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev.
Drug Discovery 2006, 5, 219−234.
(3) Jordan, M. A.; Wilson, L. Microtubules as a target for anticancer
drugs. Nat. Rev. Cancer 2004, 4, 253−265.
(4) Graening, T.; Schmalz, H. G. Total syntheses of colchicine in
comparison: a journey through 50 years of synthetic organic chemistry.
Angew. Chem., Int. Ed. 2004, 43, 3230−3256.
(5) Pasquier, E.; Andre, N.; Braguer, D. Targeting microtubules to
inhibit angiogenesis and disrupt tumour vasculature: implications for
cancer treatment. Curr. Cancer Drug Targets 2007, 7, 566−581.
(6) Shi, Q.; Chen, K.; Morris-Natschke, S. L.; Lee, K. H. Recent
progress in the development of tubulin inhibitors as antimitotic
antitumor agents. Curr. Pharm. Des. 1998, 4, 219−248.
(7) Gelmi, M. L.; Mottadelli, S.; Pocar, D.; Riva, A.; Bombardelli, E.; De
Vincenzo, R.; Scambia, G. N-Deacetyl-N-aminoacylthiocolchicine
derivatives: synthesis and biological evaluation on MDR-positive and
MDR-negative human cancer cell lines. J. Med. Chem. 1999, 42, 5272−
5276.
(8) Tang-Wai, D. F.; Brossi, A.; Arnold, L. D.; Gros, P. The nitrogen of
the acetamido group of colchicine modulates P-glycoprotein-mediated
multidrug resistance. Biochemistry 1993, 32, 6470−6476.
(9) Ringel, I.; Jaffe, D.; Alerhand, S.; Boye, O.; Muzaffar, A.; Brossi, A.
Fluorinated colchicinoids: antitubulin and cytotoxic properties. J. Med.
Chem. 1991, 34, 3334−3338.
(10) Atkinson, J. M.; Falconer, R. A.; Edwards, D. R.; Pennington, C. J.;
Siller, C. S.; Shnyder, S. D.; Bibby, M. C.; Patterson, L. H.; Loadman, P.
M.; Gill, J. H. Development of a novel tumor-targeted vascular
disrupting agent activated by membrane-type matrix metalloproteinases.
Cancer Res. 2010, 70, 6902−6912.
(11) Buey, R. M.; Calvo, E.; Barasoain, I.; Pineda, O.; Edler, M. C.;
Matesanz, R.; Cerezo, G.; Van-derwal, C. D.; Day, B. W.; Sorensen, E. J.;
Lopez, J. A.; Andreu, J. M.; Hamel, E.; Diaz, J. F. Cyclostreptin binds
covalently to microtubule pores and lumenal taxoid binding sites. Nat.
Chem. Biol. 2007, 3, 117−125.
(12) Field, J. J.; Pera, B.; Calvo, E.; Canales, A.; Zurwerra, D.; Trigili,
C.; Rodriguez-Salarichs, J.; Matesanz, R.; Kanakkanthara, A.; Wakefield,
E
dx.doi.org/10.1021/jm301151t | J. Med. Chem. XXXX, XXX, XXX−XXX