Journal of the American Chemical Society
Communication
Author Contributions
We set as our goal the cross-coupling of oxidative addition
partners that do not include a naphthylene moiety. These
electrophiles are typically less reactive in cross-coupling
reactions13c and were found not to be competent for
triarylmethane synthesis via Kumada coupling.13b Indeed,
neither the corresponding carbamates nor the use of PCy3 as
ligand provided acceptable yields of product. However,
benzhydril pivalates underwent smooth cross-coupling under
our optimized reaction conditions when SIMes was used as the
ligand (Table 3). Efficient cross-coupling was achieved for
‡C.E.M. solved the X-ray structure of the compound in Table 2,
entry 19 (S enantiomer).
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by NIH NIGMS (R01GM100212),
the University of California Cancer Research Coordinating
Committee, the University of California (Chancellor’s Fellow-
ship to M.R.H.), the Ford Family Foundation (predoctoral
fellowship to M.R.H.), and DOE (GAANN PA200A120070 to
L.E.H.). We thank Frontier Scientific for generous donations of
boronic acids. Dr. Joseph Ziller and Dr. John Greaves are
acknowledged for X-ray crystallographic and mass spectrometry
data, respectively.
a
Table 3. Scope of Oxidative Addition Partners
REFERENCES
■
(1) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
(2) (a) Lau, K. S. Y.; Fries, R. W.; Stille, J. K. J. Am. Chem. Soc. 1974,
96, 4983. (b) Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed. 2002,
41, 3910. (c) Legros, J.-Y.; Toffano, M.; Fiaud, J.-C. Tetrahedron 1995,
51, 3235. (d) Rodriquez, N.; de Arellano, C. R.; Asensio, G.; Medio-
Simon, M. Chem.Eur. J. 2007, 13, 4223. (e) Lopez-Perez, A.; Adrio,
J.; Carretero, J. C. Org. Lett. 2009, 11, 5514. (f) He, A.; Falck, J. R. J.
Am. Chem. Soc. 2010, 132, 2524. (g) Rudolph, A.; Rackelmann, N.;
Lautens, M. Angew. Chem., Int. Ed. 2007, 46, 1485.
(3) Pd-catalyzed allylic substitutions can occur with inversion or
retention, depending on the nucleophile. See: Trost, B. M.;
VanVranken, D. L. Chem. Rev. 1996, 96, 395.
(4) Stille, J. K.; Cowell, A. B. J. Organomet. Chem. 1977, 124, 253.
(5) (a) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 6694.
(b) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C. J. Am. Chem.
Soc. 2012, 134, 5794 and references cited therein. (c) Glorius, F.
Angew. Chem., Int. Ed. 2008, 47, 8347.
a
b
All data are averages of two experiments. Isolated yields after
c
column chromatography. Determined by chiral SFC.
(6) For a discussion, see: Molander, G. A.; Wisniewski, S. R. J. Am.
Chem. Soc. 2012, 134, 16856.
pivalates with a range of arylboronic esters, including an
indoleboronic ester (entries 1−4). Functionality on the
electrophile was also tolerated: furan- and benzodioxane-
substituted pivalates coupled in good yield with excellent es
(entries 5 and 6).
(7) For labeling studies, see: (a) Bock, P. L.; Boschetto, D. J.;
Rasmussen, J. R.; Demers, J. P.; Whitesides, G. M. J. Am. Chem. Soc.
1974, 96, 2814. (b) Ridgway, B. H.; Woerpel, K. A. J. Org. Chem. 1998,
63, 458. (c) Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.
(d) Taylor, B. L. H.; Jarvo, E. R. J. Org. Chem. 2011, 76, 7573.
(8) (a) Ye, J.; Bhatt, R. K.; Falck, J. R. J. Am. Chem. Soc. 1994, 116, 1.
In summary, we have developed a nickel-catalyzed Suzuki−
Miyaura cross-coupling reaction for the synthesis of enantioen-
riched triarylmethanes. The reaction proceeds with high
stereochemical fidelity. The choice of achiral ligand controls
whether the reaction proceeds with inversion or retention at
the electrophilic carbon, and therefore, either enantiomer of the
product can be formed from a single enantiomer of the starting
material. This method expands the range of triarylmethanes
that can be prepared in enantioenriched form, as simple
benzhydril pivalates and a variety of functionalized arylboronic
esters (including ones containing heterocyclic groups) can be
used in the reaction. Efforts to expand further the scope of the
reaction and elucidate the mechanistic details are underway.
(b) Holzer, B.; Hoffmann, R. W. Chem. Commun. 2003, 732.
̈
(c) Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.;
Chen, C.-Y. J. Am. Chem. Soc. 2006, 128, 3538. (d) Lange, H.;
Frohlich, R.; Hoppe, D. Tetrahedron 2008, 64, 9123. (e) Imao, D.;
̈
Glasspoole, B. W.; Laberge, S. V.; Crudden, C. M. J. Am. Chem. Soc.
2009, 131, 5024. (f) Li, H.; He, A.; Falck, J. R.; Liebeskind, L. S. Org.
Lett. 2011, 13, 3682. (g) Reference 5.
(9) (a) LaBadie, J. W.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 669.
(b) Kells, K. W.; Chong, J. M. J. Am. Chem. Soc. 2004, 126, 15666.
(c) Sandrock, D. L.; Jean-Gerard, L.; Chen, C.-Y.; Dreher, S. D.;
́
Molander, G. A. J. Am. Chem. Soc. 2010, 132, 17108. (d) Ohmura, T.;
Awano, T.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 13191. (e) Lee,
J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894.
(10) (a) Hatanaka, Y.; Hiyama, T. J. Am. Chem. Soc. 1990, 112, 7793.
(b) Hiyama, T. J. Organomet. Chem. 2002, 653, 58.
(11) (a) Awano, T.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc.
2011, 133, 20738. (b) Reference 9d.
(12) For enantiodivergent reactions of alkyllithium reagents, see:
Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. M. Nature
2008, 456, 778.
(13) (a) Taylor, B. L. H.; Swift, E. C.; Waetzig, J. D.; Jarvo, E. R. J.
Am. Chem. Soc. 2011, 133, 389. (b) Taylor, B. L. H.; Harris, M. R.;
Jarvo, E. R. Angew. Chem., Int. Ed. 2012, 51, 7790. (c) Greene, M. A.;
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and characterization data, including
X-ray crystallographic data. This material is available free of
■
S
AUTHOR INFORMATION
Corresponding Author
■
3305
dx.doi.org/10.1021/ja311783k | J. Am. Chem. Soc. 2013, 135, 3303−3306