1864
M. S. Poslusney et al. / Bioorg. Med. Chem. Lett. 23 (2013) 1860–1864
William K. Warren, Jr. Chair in Medicine (to CWL), for support of
our M1 program. Vanderbilt University is a Specialized Chemistry
Center within the MLPCN, and all ML# probes are freely available
upon request.14
References and notes
1. Dencker, D.; Thomsen, M.; Wörtwein, G.; Weikop, P.; Cui, Y.; Jeon, J.; Wess, J.;
Fink-Jensen, A. ACS Chem. Neurosci. 2012, 3, 80.
2. Wess, J.; Eglen, R. M.; Gautam, D. Nat. Rev. Drug Disc. 2007, 6, 721.
3. Bymaster, F. P.; Whitesitt, C. A.; Shannon, H. E.; DeLapp, N.; Ward, J. S.;
Calligaro, D. O.; Shipley, L. A.; Buelke-Sam, J. L.; Bodick, N. C.; Farde, L.;
Sheardown, M. J.; Olesen, P. H.; Hansen, K. T.; Suzdak, P. D.; Swedberg, M. D. B.;
Sauerberg, P.; Mitch, C. H. Drug Dev. Res. 1997, 40, 158.
4. Shekhar, A.; Potter, W. Z.; Lightfoot, J.; Lienemann, J.; Dube, S.; Mallinckrodt, C.;
Bymaster, F. P.; McKinzie, D. L.; Lelder, C. C. Am. J. Psychiatry 2008, 165, 1033.
5. Melancon, B. J.; Gogliotti, R. D.; Tarr, J. C.; Saleh, S. A.; Chauder, B. A.; Lebois, E.
P.; Cho, H. P.; Utley, T. J.; Sheffler, D. J.; Bridges, T. M.; Morrison, R. D.; Daniels, J.
S.; Niswender, C. M.; Conn, P. J.; Lindsley, C. W.; Wood, M. R. Bioorg. Med. Chem.
Lett. 2012, 22, 3467.
Figure 3. Muscarinic selectivity for 3 (VU0413162-1).
Although both compounds share the same potency of 2.9 lM (hM1
6. Digby, G. J.; Utley, T. J.; Lamsal, A.; Sevel, C.; Sheffler, D. J.; Lebois, E. P.; Bridges,
T. M.; Wood, M. R.; Niswender, C. M.; Lindsley, C. W.; Conn, P. J. ACS Chem.
EC50), the enantiomer with a slightly better efficacy (19a: ACh-
max = 67% versus 19b: AChmax = 50%) is roughly 3-times better at
enhancing the potency of ACh at the hM1 receptor. This can be seen
graphically in Figure 2 by comparing 19a (open inverted triangles)
and 19b (open circles). Returning to Table 4, in the context of the
N-ethyl spiropyrrolidines 19j and 19k, the potency trend relative
to the number of fluorines present was not strictly recapitulated
in their abilities to produce an ACh fold-shift. For example,
although 19j was slightly more potent than 19k, with both sharing
the same AChmax, 19k elicited a higher fold-shift of the full ACh
concentration-response curve (CRC). For the final compound in Ta-
ble 4, 19t, it was encouraging to see that such a structurally diverse
analog could also show such robust efficacy.
7. a Ma, L.; Seager, M. A.; Wittmann, M.; Jacobson, M.; Bickel, D.; Burno, M.; Jones,
K.; Graufelds, V. K.; Xu, G.; Pearson, M.; McCampbell, A.; Gaspar, R.; Shughrue,
P.; Danziger, A.; Regan, C.; Flick, R.; Pascarella, D.; Garson, S.; Doran, S.;
Kreatsoulas, C.; Veng, L.; Lindsley, C. W.; Shipe, W.; Kuduk, S.; Sur, C.; Kinney,
G.; Seabrook, G. R.; Ray, W. J. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15950; (b)
Bridges, T. M.; Kennedy, J. P.; Noetzel, M. J.; Breininger, M. L.; Gentry, P. R.;
Conn, P. J.; Lindsley, C. W. Bioorg. Med. Chem. Lett. 2010, 20, 1972; (c) Reid, P. R.;
Bridges, T. M.; Sheffler, D. J.; Cho, H. P.; Lewis, L. M.; Days, E.; Daniels, J. S.;
Jones, C. K.; Niswender, C. M.; Weaver, C. D.; Conn, P. J.; Lindsley, C. W.; Wood,
M. R. Bioorg. Med. Chem. Lett. 2011, 21, 2697; (d) Tarr, J. C.; Turlington, M. L.;
Reid, P. R.; Utley, T. J.; Sheffler, D. J.; Cho, H. P.; Klar, R.; Pancani, T.; Klein, M. T.;
Bridges, T. M.; Morrison, R. D.; Blobaum, A. L.; Xiang, Z.; Daniels, J. S.;
Niswender, C. M.; Conn, P. J.; Wood, M. R.; Lindsley, C. W. ACS Chem. Neurosci, in
8. (a) Brady, A. E.; Jones, C. K.; Bridges, T. M.; Kennedy, J. P.; Thompson, A. D.;
Heiman, J. U.; Breininger, M. L.; Gentry, P. R.; Yin, H.; Jadhav, S. B.; Shirey, J. K.;
Conn, P. J.; Lindsley, C. W. J. Pharmacol. Exp. Ther. 2008, 327, 941; (b) Kennedy, J.
P.; Bridges, T. M.; Gentry, P. R.; Brogan, J. T.; Kane, A. S.; Jones, C. K.; Brady, A. E.;
Shirey, J. K.; Conn, P. J.; Lindsley, C. W. ChemMedChem 2009, 4, 1600; (c)
Salovich, J. M.; Vinson, P. N.; Sheffler, D. J.; Lamsal, A.; Utley, T. J.; Blobaum, A.
L.; Bridges, T. M.; Le, U.; Jones, C. K.; Wood, M. R.; Daniels, J. S.; Conn, P. J.;
Niswender, C. M.; Lindsley, C. W.; Hopkins, C. R. Bioorg. Med. Chem. Lett. 2012,
22, 5084.
9. (a) Bridges, T. M.; Marlo, J. E.; Niswender, C. M.; Jones, C. K.; Jadhav, S. B.;
Gentry, P. R.; Plumley, H. C.; Weaver, C. D.; Conn, P. J.; Lindsley, C. W. J. Med.
Chem. 2009, 52, 3445; (b) Bridges, T. M.; Kennedy, J. P.; Cho, H. P.; Breininger,
M. L.; Gentry, P. R.; Hopkins, C. R.; Conn, P. J.; Lindsley, C. W. Bioorg. Med. Chem.
Lett. 2010, 20, 558.
To round out the characterization of these novel spirocyclic M1
PAMs, we profiled 3 and 18d across all five human and all five rat
muscarinic acetylcholine receptors. Up to the highest concentra-
tions tested (30 lM) both compounds were completely selective
for the M1 receptors. A representative example of these results is
shown in Figure 3 for compound 3 (VU0413162-1) against the hu-
man receptors.
In summary, a number of isatin replacements containing vari-
ous spirocycles have been explored and these novel structures
have been confirmed as M1 PAMs. Although flat SAR was observed
with respect to potency, significant improvements in efficacy were
achieved for a range of structures. Very high receptor subtype
selectivity for 3 and 18d was observed across the spectrum of mus-
carinic subtypes (M2 through M5). Further optimization within any
of these scaffolds holds great promise for the development of
highly active and selective M1 PAMs and will be reported in due
course.
10. Melancon, B. J.; Poslusney, M. S.; Gentry, P. R.; Tarr, J. C.; Sheffler, D. J.;
Mattmann, M. E.; Bridges, T. M.; Utley, T. J.; Daniels, J. S.; Niswender, C. M.;
Conn, P. J.; Lindsley, C. W.; Wood, M. R. Bioorg. Med. Chem. Lett. 2013, 23, 412.
11. Although the M1 PAM EC50 has been previously reported as 0.83
%AChmax = 65% (Ref. 7b), the inherent variability associated with functional
assays supports that the most recent EC50 = 0.60 M for ML137 is equally valid
lM with a
l
and can serve as a baseline comparator between the two papers.
12. Nair, V.; Rajesh, C.; Dhanya, R.; Rath, N. P. Tetrahedron Lett. 2002, 43, 5349.
13. It is worth noting that intermediates 13, 14, 16 and 17 (Schemes 2 and 3),
which bear a close resemblance to the M1,3,5 PAM VU0119498, were found to
be inactive at hM1
Acknowledgments
14. For information on the MLPCN and information on how to request any of the
The authors thank the NIH (U54MH084659), NIMH
(1RO1MH082867) and William K. Warren, Jr., who funded the