Journal of the American Chemical Society
Communication
data. This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors thank the MRC and EPSRC (joint grant reference
G0700080) for funding. N.R.C. acknowledges the P2M RNP
programme of the European Science Foundation. B.G.D. is a
recipient of a Royal Society Wolfson Merit Award. Professor
Quentin Sattentau (Sir William Dunn School of Pathology,
University of Oxford) is thanked for helpful discussions.
REFERENCES
■
(1) (a) Picco, G.; Julien, S.; Brockhausen, I.; Beatson, R.;
Antonopoulos, A.; Haslam, S.; Mandel, U.; Dell, A.; Pinder, S.;
Taylor-Papadimitriou, J.; Burchell, J. Glycobiology 2010, 20, 1241.
(b) Beatson, R. E.; Taylor-Papadimitriou, J.; Burchell, J. M.
Immunotherapy 2010, 2, 305.
(2) (a) Danishefsky, S. J.; Allen, J. R. Angew. Chem., Int. Ed. 2000, 39,
836. (b) Buskas, T.; Thompson, P.; Boons, G. J. Chem. Commun.
2009, 5335. (c) Guo, Z. W.; Wang, Q. L. Curr. Opin. Chem. Biol. 2009,
13, 608.
(3) (a) Jeon, I.; Lee, D.; Krauss, I. J.; Danishefsky, S. J. J. Am. Chem.
Soc. 2009, 131, 14337. (b) Ragupathi, G.; Koide, F.; Livingston, P. O.;
Cho, Y. S.; Endo, A.; Wan, Q.; Spassova, M. K.; Keding, S. J.; Allen, J.;
Ouerfelli, O.; Wilson, R. M.; Danishefsky, S. J. J. Am. Chem. Soc. 2006,
128, 2715. (c) Westerlind, U.; Hobel, A.; Gaidzik, N.; Schmitt, E.;
Kunz, H. Angew. Chem., Int. Ed. 2008, 47, 7551.
Figure 3. Box plots showing results of immunological experiments
with glyconanoparticles and glycopolymers. (a) Serum antibody (IgG)
titers (ELISA); (b) cross-reactivity of serum antibodies (ELISA) with
mucins. Tn = Tn-antigen glycan (α-GalNAc), sTn = sialylated Tn;
polymer key as in Table 1.
(4) (a) Buskas, T.; Ingale, S.; Boons, G. J. Angew. Chem., Int. Ed.
2005, 44, 5985. (b) Kaiser, A.; Gaidzik, N.; Becker, T.; Menge, C.;
Groh, K.; Cai, H.; Li, Y. M.; Gerlitzki, B.; Schmitt, E.; Kunz, H. Angew.
Chem., Int. Ed. 2010, 49, 3688. (c) Cai, H.; Huang, Z. H.; Shi, L.; Zhao,
Y. F.; Kunz, H.; Li, Y. M. Chem.Eur. J. 2011, 17, 6396. (d) Ingale, S.;
Awolfert, M.; Gaekwad, J.; Buskas, T.; Boons, G. J. Nat. Chem. Biol.
2007, 3, 663.
(5) Keil, S.; Kaiser, A.; Syed, F.; Kunz, H. Synthesis 2009, 1355.
(6) Wittrock, S.; Becker, T.; Kunz, H. Angew. Chem., Int. Ed. 2007,
46, 5226.
(7) (a) Slovin, S. F.; Ragupathi, G.; Adluri, S.; Ungers, G.; Terry, K.;
Kim, S.; Spassova, M.; Bornmann, W. G.; Fazzari, M.; Dantis, L.;
Olkiewicz, K.; Lloyd, K. O.; Livingston, P. O.; Danishefsky, S. J.; Scher,
H. I. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5710. (b) Gilewski, T.;
Ragupathi, G.; Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X. F.;
Bencsath, K. P.; Panageas, K. S.; Chin, J.; Hudis, C. A.; Norton, L.;
Houghton, A. N.; Livingston, P. O.; Danishefsky, S. J. Proc. Natl. Acad.
Sci. U.S.A. 2001, 98, 3270. (c) Krug, L. M.; Ragupathi, G.; Hood, C.;
Kris, M. G.; Miller, V. A.; Allen, J. R.; Keding, S. J.; Danishefsky, S. J.;
Gomez, J.; Tyson, L.; Pizzo, B.; Baez, V.; Livingston, P. O. Clin. Cancer
Res. 2004, 10, 6094. (d) Sabbatini, P. J.; Kudryashov, V.; Ragupathi,
G.; Danishefsky, S. J.; Livingston, P. O.; Bornmann, W.; Spassova, M.;
Zatorski, A.; Spriggs, D.; Aghajanian, C.; Soignet, S.; Peyton, M.;
O’Flaherty, C.; Curtin, J.; Lloyd, K. O. Int. J. Cancer 2000, 87, 79.
(e) Slovin, S. F.; Ragupathi, G.; Musselli, C.; Fernandez, C.; Diani, M.;
Verbel, D.; Danishefsky, S.; Livingston, P.; Scher, H. I. Cancer
Immunol. Immunother. 2005, 54, 694. (f) Sabbatini, P. J.; Ragupathi,
G.; Hood, C.; Aghajanian, C. A.; Juertzka, M.; Lasonos, A.; Hensley,
M. L.; Spassova, M. K.; Ouerfelli, O.; Spriggs, D. R.; Tew, W. P.;
Konner, J.; Clausen, H.; Abu Rustum, N.; Dansihefsky, S. J.;
Livingston, P. O. Clin. Cancer Res. 2007, 13, 4170.
different mucin glycoproteins bearing the Tn-antigen was
investigated. Bovine submaxillary mucin (BSM) is known to
contain significant levels of sialylated Tn-residues (sTn),20
which can be desialylated readily to expose Tn.21 Serum
samples (days 0 and 70) from immunization with glyconano-
particles presenting very different polymers PEG25Tn25 and
PEG80Tn20 were reacted with mucins bearing Tn-antigen
glycans in different forms (Figure 3b). While no or little
detectable cross-reactivity was seen in day 0 samples, all
experiments with 70 day samples indicated the presence of
detectable levels of antibodies specific for naturally occurring
mucin glycans. Interestingly, serum generated in the presence
of each nanoparticle type showed the ability to bind the Tn-
antigen glycan in both terminal and nonterminal context.
We have described the synthesis of ‘multicopy-multivalent’
nanoparticles decorated with tumor-associated (Tn) antigen
glycans and have shown that these generate a significant
immune response in vivo, with promising indications that the
antibodies generated are capable of recognizing natural Tn-
antigen glycans and mammalian-mucin glycoproteins. While
the absolute titers reported here are lower than those obtained
with glycoconjugates based on protein toxin platforms,22 the
ability to create fully synthetic protein- and peptide-free
glycoconjugate vaccines through layered multivalent display is
the first of its kind.
ASSOCIATED CONTENT
■
S
* Supporting Information
(8) (a) Hong, S. Y.; Tobias, G.; Al-Jamal, K. T.; Ballesteros, B.; Ali-
Boucetta, H.; Lozano-Perez, S.; Nellist, P. D.; Sim, R. B.; Finucane, C.;
Mather, S. J.; Green, M. L. H.; Kostarelos, K.; Davis, B. G. Nat. Mater.
Procedures for glycomonmer, glycopolymer and nanoparticle
preparation, immunization experiments and characterization
C
dx.doi.org/10.1021/ja4046857 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX