ChemComm
Communication
7 (a) X.-H. Chen, X.-Y. Xu, H. Liu, L.-F. Cun and L.-Z. Gong, J. Am. Chem.
Soc., 2006, 128, 14802–14803; (b) X. Li, X. Jia, G. Lu, T. T.-L. Au-Yeung,
K.-H. Lam, T. W. H. Lo and A. S. C. Chan, Tetrahedron: Asymmetry,
2003, 14, 2687–2691.
8 (a) F. Xu, D. Huang, C. Han, W. Shen, X. Lin and Y. Wang, J. Org.
ˇ
´
Chem., 2010, 75, 8677–8680; (b) I. Coric, S. Mu¨ller and B. List, J. Am.
Chem. Soc., 2010, 132, 17370–17373; (c) J.-H. Xie and Q.-L. Zhou, Acc.
´
Chem. Res., 2008, 41, 581–593; (d) A. Z. Gonzalez, D. Benitez,
E. Tkatchouk, W. A. Goddard III and F. D. Toste, J. Am. Chem.
Soc., 2011, 133, 5500–5507.
Scheme 3 Asymmetric transfer hydrogenation of 2-phenylquinoline.
9 (a) T. Akiyama, Y. Saitoh, H. Morita and K. Fuchibe, Adv. Synth.
Catal., 2005, 347, 1523–1526; (b) A. Voituriez and A. B. Charette, Adv.
Synth. Catal., 2006, 348, 2363–2370; (c) H. W. Lam, Synthesis, 2011,
2011–2043; (d) H. Teller, M. Corbet, L. Mantilli, G. Gopakumar,
R. Goddard, W. Thiel and A. Fu¨rstner, J. Am. Chem. Soc., 2012, 134,
15331–15342.
10 (a) Y. Liu and K. Ding, J. Am. Chem. Soc., 2005, 127, 10488–10489;
(b) K. Dong, Z. Wang and K. Ding, J. Am. Chem. Soc., 2012, 134,
12474–12477.
with respect to the phenyl substituent in 5a (27% ee). Gratifyingly,
the enantioselectivity level could be improved then to 85% ee
using the 4-methoxybenzyl ester 7b as the reducing agent and 5b
as the catalyst. Thus, these preliminary results clearly demonstrate
the potential of these new paracyclophane-based phosphoric
acids in Brønsted acid organocatalysis.24
11 D. Enders, M. Ludwig and G. Raabe, Chirality, 2012, 24, 215–222.
12 For reviews on chiral paracyclophane derivatives and uses in asym-
metric catalysis, see: (a) S. E. Gibson and J. D. Knight, Org. Biomol.
Chem., 2003, 1, 1256–1269; (b) G. J. Rowlands, Org. Biomol. Chem.,
2008, 6, 1527–1534.
13 Achiral paracyclophanes displaying two O–P–O tethering chains
have been described by Nifant’ev: (a) E. E. Nifant’ev, E. N. Rasadkina
and Y. B. Evdokimenkova, Russ. J. Gen. Chem., 2001, 71, 366–372;
(b) E. N. Rasadkina, A. V. Petrov and E. E. Nifant’ev, Russ. J. Gen. Chem.,
2007, 77, 241–247.
14 For naming descriptors in cyclophanes, see: N. V. Vorontsova,
V. I. Rozenberg, E. V. Sergeeva, E. V. Vorontsov, Z. A. Starikova,
K. A. Lyssenko and H. Hopf, Chem.–Eur. J., 2008, 14, 4600–4617.
15 S. M. Bachrach, J. Phys. Chem. A, 2011, 115, 2396–2401.
16 Representative examples: (a) H. Takemura, G. Wen and T. Shinmyozu,
Synthesis, 2005, 2845–2850; (b) Y. Nakamura, M. Matsumoto,
Y. Hayashida and J. Nishimua, Tetrahedron Lett., 1997, 38, 1983–1986;
(c) T. Hori, Y. Shibata and K. Tanaka, Tetrahedron: Asymmetry, 2010, 21,
1303–1306.
In summary, we have found a suitable access to the first
series of cyclic phosphoric acids displaying C2-symmetric planar
chiral paracyclophane scaffolds including phosphorus. The
presence of ferrocene as a constitutive element of the paracyclo-
phane core is a key structural feature ensuring satisfying
chemical and configurational stability of these compounds. We
have demonstrated the efficiency of the new acids as catalysts in
model organocatalytic H-transfer reductions. The highly versatile
synthetic approach should allow modulation and optimization
of the catalytic behavior of these acids, on a case by case basis.
Besides the potential use of the new phosphoric acids as
organocatalysts, this work also opens new perspectives for the
synthesis of unique ligands based on the same paracyclophane
scaffolds, namely chiral phosphoramidites, phosphites and
others, which will be available by analogous synthetic strategies. 17 Unpublished results.
18 For previous examples of paracyclophanes including ferrocene as a
This work was supported by the Paris-Sud University (Ph.D. grant
to J.S.), the I.C.S.N., the Agence Nationale de la Recherche (ANR
Blanc SIMI7 2011, ‘‘Chiracid’’) and the COST ORCA action CM0905.
tethering unit, see: (a) I. Shimizu, Y. Kamei, T. Tezuka, T. Izumi and
A. Kasahara, Bull. Chem. Soc. Jpn., 1983, 56, 192–198; (b) A. Kasahara,
T. Izumi, I. Shimizu, T. Oikawa, H. Umezawa, M. Murakami and
O. Watanabe, Bull. Chem. Soc. Jpn., 1985, 58, 1560–1569.
19 W. Bannwarth and A. Trzeciak, Helv. Chim. Acta, 1987, 70, 175–186.
20 The calcium salt of 5a has been isolated after column chromato-
graphy of the phosphoric acid on silica gel.
Notes and references
1 (a) T. Akiyama, J. Itoh, K. Yokota and K. Fuchibe, Angew. Chem., Int.
Ed., 2004, 43, 1566–1568; (b) D. Uraguchi and M. Terada, J. Am. 21 S. Grimme, Chem.–Eur. J., 2004, 10, 3423–3429.
Chem. Soc., 2004, 126, 5356–5357; (c) M. Terada, Synthesis, 2010, 22 The a and b angles display average values of 12.5 and 11.0 degrees
1929–1982; (d) T. Akiyama, Chem. Rev., 2007, 107, 5744–5758.
2 (a) S. Mayer and B. List, Angew. Chem., Int. Ed., 2006, 45, 4193–4195;
for [2.2]paracyclophanes and 5.5 and 4.6 degrees for [3.3]paracyclo-
phanes. See ref. 15 and 21 and references cited therein.
(b) G. L. Hamilton, E. J. Kang, M. Mba and F. D. Toste, Science, 2007, 23 (a) M. Rueping, A. P. Antonchick and T. Theissmann, Angew. Chem.,
317, 496–499; (c) M. Mahlau and B. List, Angew. Chem., Int. Ed., 2013, 52,
518–533; (d) K. Brak and E. N. Jacobsen, Angew. Chem., Int. Ed., 2013, 52,
534–561.
Int. Ed., 2006, 45, 3683–3686; (b) M. Rueping, E. Sugiono and
F. R. Schoepke, Synlett, 2010, 852–865; (c) C. Zheng and S.-L. You,
Chem. Soc. Rev., 2012, 41, 2498–2518.
3 (a) A. H. M. de Vries, A. Meetsma and B. L. Feringa, Angew. Chem., Int. 24 The catalytic activity of the new acids 5 is at least as high as that
Ed. Engl., 1996, 35, 2374–2376; (b) M. van den Berg, A. J. Minnaard,
E. P. Schudde, J. van Esch, A. H. M. de Vries, J. G. de Vries and
B. L. Feringa, J. Am. Chem. Soc., 2000, 122, 11539–11540; (c) J. F. Teichert
and B. L. Feringa, Angew. Chem., Int. Ed., 2010, 49, 2486–2528.
4 (a) C. Claver, E. Fernandez, A. Gillon, K. Heslop, D. J. Hyett, A. Martorell,
A. G. Orpen and P. G. Pringle, Chem. Commun., 2000, 961–962;
(b) M. T. Reetz and T. Sell, Tetrahedron Lett., 2000, 41, 6333–6336.
5 M. T. Reetz and G. Mehler, Angew. Chem., Int. Ed., 2000, 39, 3889–3890.
6 (a) G. B. Rowland, H. Zhang, E. B. Rowland, S. Chennamadhavuni,
Y. Wang and J. C. Antilla, J. Am. Chem. Soc., 2005, 127, 15696–15697;
(b) A. A. Desai and W. D. Wulff, Synthesis, 2010, 3670–3680.
of Binol-derived phosphoric acids. Given that the structural features
of 5 differ significantly from those of Binol derivatives, the effects of
the substituents on the enantioselectivity levels do not follow the
same trends in the two series. Thus, for instance, in the reduction of
2-phenylquinoline with the Hantzsch ester 7a (Scheme 3), the
phenyl-substituted catalyst 5a performs better than the corresponding
phenyl-substituted Binol-derived phosphoric acid (ee = 27% and 5%
respectively). In the Binol series the highest enantioselectivity has been
obtained with the 9-phenanthryl substituted acid (97% ee, see ref. 23a)
while the ferrocenic acid 5 with 9-phenanthryl substituents gives a
20% ee (unpublished results).
c
6086 Chem. Commun., 2013, 49, 6084--6086
This journal is The Royal Society of Chemistry 2013