Journal of the American Chemical Society
Communication
(2) (a) Meyer, T. J.; Huynh, M. H. V.; Thorp, H. H. Angew. Chem., Int.
Ed. 2007, 46, 5284. (b) Stubbe, J.; Nocera, D. G.; Yee, C.; Chang, M.
Chem. Rev. 2003, 103, 2167. (c) Kaila, V. R. I.; Verkhovsky, M. I.;
ketone·acid complex. The former possibility can be discounted
by considering the large pKa difference in MeCN between
protonated acetophenone (pKa = −0.1)15 and the diphenyl
phosphoric acid (pKa ∼ 13).21 Taking this free energy difference
of +17.9 kcal/mol as the minimal kinetic barrier to proton
transfer necessitates a rate constant <4.6 × 10−1 M−1s−1. As such,
this stepwise mechanism is too slow to be operative within the
1.9 μs lifetime of the Ir(III) excited state.26
Wikstrom, M. Chem. Rev. 2010, 110, 7062. (d) Hatcher, E.; Soudachov,
̈
A.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2004, 126, 5763.
(3) Mayer, J. M.; Rhile, I. J. Biochim. Biophys. Acta, Bioenerg. 2004, 51,
1655.
(4) Schrauben, J. N.; Cattaneo, M.; Day, T. C.; Tenderholt, A. L.;
Mayer, J. M. J. Am. Chem. Soc. 2012, 134, 16635.
As both sequential transfer mechanisms can be discounted, the
observed rate law suggests that concerted mechanisms are likely
operative in ketyl formation. Assuming a BDFE of 26 kcal/mol
for the acetophenone ketyl O−H bond, the driving force for
concerted transfer with these reagents is −1.9 kcal/mol.
Importantly, while these experiments were carried out in
MeCN to allow comparisons to established pKa and potential
values, catalytic reactions of 1 and BT under the action of
Ir(ppy)3 and diphenyl phosphoric acid in MeCN were viable,
delivering the cyclization products in 83% yield as a 5.3:1 mixture
of diastereomers.
Analogous fluorescence quenching studies are not possible in
the ruthenium-catalyzed reactions due to the more modest
reducing abilities of the RuII(bpy)3 excited state (*E1/2ox = −1.19
V vs Fc, ‘BDFE’ = 45 kcal/mol with diphenyl phosphoric acid).
However, analysis of the relevant energies required by the
stepwise pathways would suggest that concerted PCET is also
operative in the catalytic reactions. While direct electron transfer
between RuI(bpy)3 and 1 is endergonic by ∼18 kcal/mol, the
driving force for ketyl formation in the analogous PCET
mechanism is only +7.0 kcal/mol. This assumption is bolstered
by the lack of consumption of 1 under conditions known to
generate Ru(I), both in the presence and absence of Brønsted
acids of sufficient acidity to quantitatively protonate any
transiently generated ketyl radical anion (pKa ∼20 in MeCN)
(Table 1, entries 1−4).
(5) In this work, ‘concerted PCET’ is used to imply the simultaneous
transfer of electrons and protons from independent donors to a single
acceptor or the microscopic reverse of this process.
(6) (a) Rosenthal, J.; Luckett, T. D.; Hodgkiss, J. M.; Nocera, D. G. J.
Am. Chem. Soc. 2006, 128, 6546. (b) Yang, J. Y.; Nocera, D. G. J. Am.
Chem. Soc. 2007, 129, 8192.
(7) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev. 2010, 110,
6961.
(8) (a) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem.
Soc. 2008, 130, 12886. (b) Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009,
131, 14604. (c) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322,
77. (d) McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334,
1114. (e) Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am.
Chem. Soc. 2009, 131, 8756. (f) Tucker, J. W.; Stephenson, C. R. J. J. Org.
Chem. 2012, 77, 1617. (g) Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem.
Soc. 2012, 134, 18577.
(9) Yoon has reported that formic acid activates enones for use in
photoredox catalysis. In this work, a stepwise mechanism that proceeds
through an oxocarbenium intermediate was proposed: Du, J.; Espelt, L.
R.; Guzei, I. A.; Yoon, T. P. Chem. Sci. 2011, 2, 2115.
(10) (a) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004,
104, 3371. (b) Nicolaou, K. C.; Ellery, S. P.; Chen, J. S. Angew. Chem., Int.
Ed. 2009, 48, 7140.
(11) (a) Corey, E. J.; Zheng, G. Z. Tetrahedron Lett. 1997, 38, 2045.
(b) Hays, D.; Fu, G. C. J. Org. Chem. 1996, 61, 4. (c) Estev
́
ez, R. E.;
Oller-Lopez, J. L.; Robles, R.; Melgarejo, C. R.; Gansauer, A.; Cuerva, J.
́
̈
M.; Oltra, J. E. Org. Lett. 2006, 8, 5433. (d) For a recent review, see:
Streuff, J. Synthesis 2013, 45, 281.
(12) Arnett, E. M. Prog. Phys. Org. Chem. 1963, 1, 223.
(13) Hayon, E.; Ibata, T.; Lichtin, N. N.; Simic, M. J. Phys. Chem. 1972,
76, 2072.
(14) Fukuzumi, S.; Ishikawa, K.; Hironaka, K.; Tanaka, T. J. Chem. Soc.,
Perkin Trans. 1987, 2, 751.
(15) Kolthoff, I. M.; Chantooni, M. K. J. Am. Chem. Soc. 1973, 95, 8539.
(16) Waidmann, C. R.; Miller, A. J. M.; Ng, C. A.; Scheuermann, M. L.;
Porter, T. R.; Tronic, T. A.; Mayer, J. A. Energy Environ. Sci. 2012, 5,
7771.
(17) Bordwell, F. G.; Cheng, J. P.; Harrelson, J. A. J. Am. Chem. Soc.
1988, 110, 1229.
(18) Similar thermochemical approaches have been used in the
development of Ni-based catalysts for hydrogen production: DuBois, D.
L.; Bullock, R. M. Eur. J. Org. Chem. 2011, 1017.
In conclusion, we have developed a new protocol for catalytic
ketyl radical chemistry enabled by concerted proton-coupled
electron transfer. We anticipate that concerted PCET will prove
to be a general mode of catalytic activation and the elements of
reaction design described herein will prove successful in their
application to other substrate classes and transformations as well.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and characterization data. This material
■
S
AUTHOR INFORMATION
Corresponding Author
(19) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Von
Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85.
(20) (a) Zhu, X.; Li, H.; Li, Q.; Ai, T.; Lu, J.; Yang, Y.; Cheng, J.
Chem.Eur. J. 2003, 9, 871. (b) Fukuzumi, S.; Koumitsu, S.; Hironaka,
K.; Tanaka, T. J. Am. Chem. Soc. 1987, 109, 305.
■
Notes
The authors declare no competing financial interest.
(21) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W.; Atodiresei, I.
Angew. Chem., Int. Ed. 2011, 50, 6706.
ACKNOWLEDGMENTS
(22) Reactions with Ir(ppy)2(dtbpy)PF6 and Ir(ppy)3 alone provide
conversion in the model reaction, but reactions with acid are
considerably faster; see SI.
(23) Enholm, E. J.; Trivellas, A. Tetrahedron Lett. 1989, 30, 1063.
(24) Fukuzumi has studied a system wherein ketones activated by
HClO4 quench the excited state of RuII(bpy)3. See refs 14 and 23.
(25) Fukuzumi, S.; Chiba, M.; Tanaka, T. Chem. Lett. 1989, 18, 31.
(26) Dixon, I. M.; Collin, J.; Sauvage, J.; Flamigni, L.; Encinas, S.;
Barigelletti, F. Chem. Soc. Rev. 2000, 29, 385.
■
Financial support was provided by Princeton University and the
ACS-PRF. We acknowledge Mark Watson for computational
assistance.
REFERENCES
■
(1) (a) Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.;
Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.;
Meyer, T. J. Chem. Rev. 2012, 112, 4016. (b) Mayer, J. M. Annu. Rev.
Phys. Chem. 2004, 55, 363. (c) Reece, S. Y.; Nocera, D. G. Annu. Rev.
Biochem. 2009, 78, 673.
D
dx.doi.org/10.1021/ja404342j | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX