Paper
Organic & Biomolecular Chemistry
as intermolecular amide hydrogen bonds are responsible for
the heterologous self-aggregation which finally leads to a close
proximity of His and Cys side chain to give a catalytic dyade.
These findings offer a new understanding toward a potential
role of the so far undervalued role of cyclic dipeptides in
chemical evolution and further implies the importance of self-
assembled peptide aggregates in the pre-Darwin evolution.
Nat. Chem., 2014, 6, 303; (h) M. Matsumoto, S. J. Lee,
M. L. Waters and M. R. Gagné, J. Am. Chem. Soc., 2014,
136, 15817; (i) M. Bélières, N. Chouini-Lalanne and
C. Déjugnat, RSC Adv., 2015, 5, 35830; ( j) C. G. Pappas,
I. R. Sasselli and R. V. Ulijn, Angew. Chem., Int. Ed., 2015,
54, 8119; (k) M. P. Friedmann, V. Torbeev, V. Zelenay,
A. Sobol, J. Greenwald and R. Riek, PLoS One, 2015, 10,
e0143948; (l) A. J. Burton, A. R. Thomson, W. M. Dawson,
R. L. Brady and D. N. Woolfson, Nat. Chem., 2016, 8, 837;
(m) G. Gulseren, M. A. Khalily, A. B. Tekinay and
M. O. Guler, J. Mater. Chem. B, 2016, 4, 4605;
(n) Y. Maeda, J. Fang, Y. Ikezoe, D. H. Pike, V. Nanda and
H. Matsui, PLoS One, 2016, 11, e0153700; (o) M. Wang,
Y. Lv, X. Liu, W. Qi, R. Su and Z. He, ACS Appl. Mater.
Interfaces, 2016, 8, 14133; (p) Y.-M. Wong, H. Masunaga,
J.-A. Chuah, K. Sudesh and K. Numata, Biomacromolecules,
2016, 17, 3375; (q) A. M. Garcia, M. Kurbasic, S. Kralj,
M. Melchionna and S. Marchesan, Chem. Commun., 2017,
53, 8110.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
Financial Support by the Fonds der Chemischen Industrie
(FCI) is gratefully acknowledged.
8 D. Zaramella, P. Scrimin and L. J. Prins, J. Am. Chem. Soc.,
2012, 134, 8396.
References
1 T. A. E. Jakschitz and B. M. Rode, Chem. Soc. Rev., 2012, 41,
5484.
2 G. Danger, R. Plasson and R. Pascal, Chem. Soc. Rev., 2012,
41, 5416.
3 (a) A. Brack, Pure Appl. Chem., 1993, 65, 1143; (b) A. Brack,
Chem. Biodiversity, 2007, 4, 665.
4 (a) B. M. Rode, Peptides, 1999, 20, 773; (b) I. Ghosh and
J. Chmielewski, Curr. Opin. Chem. Biol., 2004, 8, 640;
(c) O. Carny and E. Gazit, FASEB J., 2005, 19, 1051;
(d) J. Greenwald, M. P. Friedmann and R. Riek, Angew.
Chem., Int. Ed., 2016, 55, 11609.
5 (a) M. Raynal, P. Ballester, A. Vidal-Ferran and
P. W. N. M. van Leeuwen, Chem. Soc. Rev., 2014, 43, 1734;
(b) E. Kuah, S. Toh, J. Yee, Q. Ma and Z. Gao, Chem. – Eur.
9 T. Darbre and J.-L. Reymond, Acc. Chem. Res., 2006, 39, 925.
10 N. Singh, M. P. Conte, R. V. Ulijn, J. F. Miravet and
B. Escuder, Chem. Commun., 2015, 51, 13213.
11 (a) A. Brack, K. W. Ehler and L. E. Orgel, J. Mol. Evol., 1976,
8, 307; (b) A. L. Weber and L. E. Orgel, J. Mol. Evol., 1978,
11, 189; (c) A. L. Weber and L. E. Orgel, J. Mol. Evol., 1979,
13, 185; (d) A. L. Weber and L. E. Orgel, J. Mol. Evol., 1979,
13, 193; (e) S. Steinberg and J. L. Bada, Science, 1981, 213,
544; (f) M. Nagayama, O. Takaoka, K. Inomata and
Y. Yamagata, Origins Life Evol. Biospheres, 1990, 20, 249;
(g) J. Ying, R. Lin, P. Xu, Y. Wu, Y. Liu and Y. Zhao, Sci.
Rep., 2018, 8, 936; (h) Y. Furukawa, T. Otake, T. Ishiguro,
H. Nakazawa and T. Kakegawa, Origins Life Evol. Biospheres,
2012, 42, 519.
J., 2016, 22, 8404; (c) N. Singh, M. Kumar, J. F. Miravet, 12 (a) K. Kawamura, T. Nishi and T. Sakiyama, J. Am. Chem.
R. V. Ulijn and B. Escuder, Chem. – Eur. J., 2017, 23, 981;
(d) M. D. Nothling, Z. Xiao, A. Bhaskaran, M. T. Blyth,
Soc., 2005, 127, 522; (b) K. Kawamura, H. Takeya and
T. Kushibe, Adv. Space Res., 2009, 44, 267.
C. W. Bennett, M. L. Coote and L. A. Connal, ACS Catal., 13 M. A. Ziganshin, R. A. Larionov, A. V. Gerasimov,
2018, 9, 168; (e) O. Zozulia, M. A. Dolan and
I. V. Korendovych, Chem. Soc. Rev., 2018, 47, 3621.
6 P. Makam, S. S. R. K. C. Yamijala, K. Tao, L. J. W. Shimon,
S. A. Ziganshina, A. E. Klimovitskii, K. R. Khayarov,
T. A. Mukhametzyanov and V. V. Gorbatchuk, J. Pept. Sci.,
2019, 25, e3177.
D. S. Eisenberg, M. R. Sawaya, B. M. Wong and E. Gazit, 14 A. Shimoyama and R. Ogasawara, Origins Life Evol.
Nat. Catal., 2019, 2, 977. Biospheres, 2002, 32, 165.
7 (a) K. S. Broo, H. Nilsson, J. Nilsson, A. Flodberg and 15 A. J. Kleinsmann and B. J. Nachtsheim, Chem. Commun.,
L. Baltzer, J. Am. Chem. Soc., 1998, 120, 4063; 2013, 49, 7818.
(b) B. Baumeister, N. Sakai and S. Matile, Org. Lett., 2001, 16 (a) T. Govindaraju, Supramol. Chem., 2011, 23, 759;
3, 4229; (c) A. J. Nicoll and R. K. Allemann, Org. Biomol.
Chem., 2004, 2, 2175; (d) M. O. Guler and S. I. Stupp,
J. Am. Chem. Soc., 2007, 129, 12082; (e) Z. Huang, S. Guan,
Y. Wang, G. Shi, L. Cao, Y. Gao, Z. Dong, J. Xu, Q. Luo
(b) T. Govindaraju, M. Pandeeswar, K. Jayaramulu,
G. Jaipuria and H. S. Atreya, Supramol. Chem., 2011, 23,
487; (c) S. Manchineella and T. Govindaraju, RSC Adv.,
2012, 2, 5539.
and J. Liu, J. Mater. Chem. B, 2013, 1, 2297; (f) C. Zhang, 17 S. Manchineella and T. Govindaraju, ChemPlusChem, 2017,
X. Xue, Q. Luo, Y. Li, K. Yang, X. Zhuang, Y. Jiang, 82, 88.
J. Zhang, J. Liu, G. Zou and X.-J. Liang, ACS Nano, 2014, 8, 18 M. Kurbasic, S. Semeraro, A. M. Garcia, S. Kralj, E. Parisi,
11715; (g) C. M. Rufo, Y. S. Moroz, O. V. Moroz, J. Stöhr,
T. A. Smith, X. Hu, W. F. DeGrado and I. V. Korendovych,
C. Deganutti, R. de Zorzi and S. Marchesan, Synthesis,
2019, 51, 2829.
106 | Org. Biomol. Chem., 2020, 18, 102–107
This journal is © The Royal Society of Chemistry 2020