The reductive aldol reaction of 4a, with (lIpc)2BH11 and
benzaldehyde (7a), was used to optimize reaction condi-
tions (Table 1).
Scheme 1. Reductive Aldol Reactions of 1 and 4
Table 1. Optimization of Reaction Parametersa
entry solvent t (°C)
x
yieldb dr (9a:syn)c ee (9a)d
1
2
3
4
5
6
7
toluene
THF
0
1.1
61
92
84
76
81
29
79
15:1
11:1
11:1
16:1
16:1
13:1
18:1
85
76
80
85
85
ND
86
0
1.1
CH2Cl2
Et2O
0
1.1
0
1.1
the reducing agent (Scheme 1a).9 Isomerization of 2Z to the
corresponding E(O)-enolborinate did not occur evidently
due to A1,3 strain that develops between the morpholine
unit and the enolborinate methyl substituent. Hence the
reductive aldol reactions of N-acryloylmorpholine (1) were
highly selective for the syn-aldol 3.9 We reasoned that
replacing the morpholine amide of 1 with an ester unit in
4 would eliminate this interaction and that enolborinate 5Z
obtained from 1,4-reduction8 of acrylate 4 would undergo
a 1,3-boratropic shift to give the presumably more stable
enolate 5E,8c thereby providing access to anti-aldols 6
(Scheme 1b).
toluene
toluene
Et2O
0
0.85
0.85
0.85
À30
0
a Reactions were performed by treating 4a (0.275 mmol, 1.1 equiv)
with (lIpc)2BH (0.25 mmol, 1 equiv) in solvent (1 mL) at the indicated
temperature for 2 h, followed by addition of 7a at À78 °C. After being
stirred for 12 h at À78 °C, the reaction was subjected to oxidative
hydrolysis (buffer/MeOH/H2O2) followed by product isolation. b Iso-
lated yield of aldols following silica gel chromatography. c Diastereomer
ratio (dr) determined by 1H NMR analysis of crude reaction mixtures.
d Enantiomeric excess (% ee) and absolute configuration were deter-
mined by using the Mosher ester analysis.12
Treatment of acrylate 4a with (lIpc)2BH (1.1 equiv) in
toluene at 0 °C for 2 h followed by addition of benzalde-
hyde at À78 °C provided a 15:1 mixture of 9a and the syn
diastereomer in 61% yield (entry 1). As indicated by the
formation of anti-aldol 9a as the major product, this initial
experiment suggested that enolborinate 8E is indeed the
dominant species in this reaction. Reactions performed
in toluene (entry 1) and Et2O (entry 4) exhibited greater
diastereo- and enantioselectivity than those in THF and
CH2Cl2 (entries 2 and 3). Decreasing the amount of
aldehyde to 0.85 equiv led to improved product yields
(calculated based on aldehyde as the limiting reagent; entries
5, 7). Lowering the temperature of the hydroboration
reaction had a dramatic effect on yield (entry 6), presum-
ably due to incomplete reaction under these conditions.
Ultimately, the best compromise between product yield
and diastereo- and enantioselectivity was achieved by
performing the hydroboration reaction at 0 °C in Et2O
(entry 7).
These conditions were applied to the reductive anti-aldol
reactions of acrylate 4a with a series of achiral aldehydes
7aÀf (Scheme 2). anti-R-Methyl-β-hydroxy tert-butyl es-
ters 9aÀf were obtained in 69À87% yield with excellent
diastereoselectivity (dr 13:1 to g20:1), and with moderate
to good enantioselectivity (59À86% ee).13 Interestingly,
the sense of absolute stereochemical induction by the
(diisopinocampheyl)boryl unit in these anti-selective aldol
Weselected the inexpensive, commerciallyavailabletert-
butyl acrylate 4a as the initial substrate for this study.4d,10
(4) (a) Meyers, A. I.; Yamamoto, Y. J. Am. Chem. Soc. 1981, 103,
4278–4279. (b) Masamune, S.; Sato, T.; Kim, B.; Wollmann, T. A.
J. Am. Chem. Soc. 1986, 108, 8279–8281. (c) Paterson, I.; Goodman,
J. M.; Isaka, M. Tetrahedron Lett. 1989, 30, 7121–7124. (d) Corey, E. J.;
Kim, S. S. J. Am. Chem. Soc. 1990, 112, 4976–4977. (e) Parmee, E. R.;
Hong, Y.; Tempkin, O.; Masamune, S. Tetrahedron Lett. 1992, 33,
1729–1732. (h) Denmark, S. E.; Wynn, T.; Beutner, G. L. J. Am. Chem.
Soc. 2002, 124, 13405–13407. (i) Yamashita, Y.; Ishitani, H.; Shimizu,
H.; Kobayashi, S. J. Am. Chem. Soc. 2002, 124, 3292–3302. (j) Jung,
M. E.; Zhang, T. Org. Lett. 2008, 10, 137–140. (k) Dıaz-Oltra, S.; Ruiz,
´
P.; Falomir, E.; Murga, J.; Carda, M.; Marco, J. A. Org. Biomol. Chem.
2012, 10, 6937–6944. (l) Sureshkumar, D.; Kawato, Y.; Iwata, M.;
Kumagai, N.; Shibasaki, M. Org. Lett. 2012, 14, 3108–3111.
(5) For leading references to enantioselective organocatalytic anti-
aldol reactions: (a) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2002, 124, 6798–6799. (b) Thayumanavan, R.; Tanaka, F.; Barbas,
C. F., III. Org. Lett. 2004, 6, 3541–3544. (c) Yang, H.; Mahapatra, S.;
Cheong, P. H.-Y.; Carter, R. G. J. Org. Chem. 2010, 75, 7279–7290. (d)
Li, S.; Wu, C.; Fu, X.; Miao, Q. Ind. Eng. Chem. Res. 2011, 50, 13711–
13716.
(6) (a) Nishiyama, H.; Shiomi, T.; Tsuchiya, Y.; Matsuda, I. J. Am.
Chem. Soc. 2005, 127, 6972–6973. (b) Ito, J.; Shiomi, T.; Nishiyama, H.
Adv. Synth. Catal. 2006, 348, 1235–1240. (c) Shiomi, T.; Ito, J.; Yamamoto,
Y.; Nishiyama, H. Eur. J. Org. Chem. 2006, 5594–5600. (d) Hashimoto, T.;
Ito, J.; Nishiyama, H. Tetrahedron 2008, 64, 9408–9412.
(7) (a) Shiomi, T.; Adachi, T.; Ito, J.; Nishiyama, H. Org. Lett. 2009,
11, 1011–1014.
(8) (a) Evans, D. A.; Fu, G. C. J. Org. Chem. 1990, 55, 5678–5680. (b)
Boldrini, G. P.; Mancini, F.; Tagliavini, E.; Trombini, C.; Umani-
Ronchi, A. J. Chem. Soc., Chem. Commun. 1990, 1680–1681. (c)
Boldrini, G. P.; Bortolotti, M.; Mancini, F.; Tagliavini, E.; Trombini,
C.; Umani-Ronchi, A. J. Org. Chem. 1991, 56, 5820–5826. (d) Matsumoto,
Y.; Hayashi, T. Synlett 1991, 349–350. (e) Huddleston, R. R.; Cauble,
D. F.; Krische, M. J. J. Org. Chem. 2003, 68, 11–14. (f) Ghosh, A. K.; Kass,
J.; Anderson, D. D.; Xu, X.; Marian, C. Org. Lett. 2008, 10, 4811–4814.
(9) Nuhant, P.; Allais, C.; Roush, W. R. Angew. Chem., Int. Ed. 2013,
52, in press (doi: 10.1002/anie.201302535).
(11) Brown, H. C.; Singaram, B. J. Org. Chem. 1984, 49, 945–947.
(12) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512–
519. (b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am.
Chem. Soc. 1991, 113, 4092–4096.
(10) Corey, E. J.; Lee, D.-H. Tetrahedron Lett. 1993, 34, 1737–1740.
B
Org. Lett., Vol. XX, No. XX, XXXX