Bioconjugate Chemistry
Communication
(9) Jonkheijm, P., Weinrich, D., Schroder, H., Niemeyer, C. M., and
Waldmann, H. (2008) Chemical strategies for generating protein
biochips. Angew. Chem., Int. Ed. Engl. 47, 9618−9647.
(10) Luk, Y. Y., Tingey, M. L., Dickson, K. A., Raines, R. T., and
Abbott, N. L. (2004) Comparison of the binding activity of randomly
oriented and uniformly oriented proteins immobilized by chemo-
selective coupling to a self-assembled monolayer. J. Am. Chem. Soc.
126, 9024−9032.
(11) Agarwal, P., van der Weijden, J., Sletten, E. M., Rabuka, D., and
Bertozzi, C. R. (2013) A Pictet-Spengler ligation for protein chemical
modification. Proc. Natl. Acad. Sci. U.S.A. 110, 46−51.
(12) Borra, R., Dong, D., Elnagar, A. Y., Woldemariam, G. A., and
Camarero, J. A. (2012) In-cell fluorescence activation and labeling of
proteins mediated by FRET-quenched split inteins. J. Am. Chem. Soc.
134, 6344−6353.
(13) Duppatla, V., Gjorgjevikj, M., Schmitz, W., Kottmair, M.,
Mueller, T. D., and Sebald, W. (2012) Enzymatic deglutathionylation
to generate interleukin-4 cysteine muteins with free thiol. Bioconjugate
Chem. 23, 1396−1405.
(14) Viswanathan, R., Labadie, G. R., and Poulter, C. D. (2013)
Regioselective covalent immobilization of catalytically active gluta-
thione S-transferase on glass slides. Bioconjugate Chem. 24, 571−577.
(15) Gauchet, C., Labadie, G. R., and Poulter, C. D. (2006) Regio-
and chemoselective covalent immobilization of proteins through
unnatural amino acids. J. Am. Chem. Soc. 128, 9274−9275.
(16) Yin, J., Liu, F., Li, X. H., and Walsh, C. T. (2004) Labeling
proteins with small molecules by site-specific posttranslational
modification. J. Am. Chem. Soc. 126, 7754−7755.
biomedical sensors that potentially can be layered with
smSNAREs. Proteomics applications also call for generality
for construction of ELISA-like “pull down” assays for a wide
range of proteins. The tool developed here anchors any gene of
interest to be bioconjugated in a single step after translation to
corresponding GST-fusion proteins. Therefore, future studies
will probe application of this strategy in ELISA-like binding
assays of proteomic mixtures.
ASSOCIATED CONTENT
* Supporting Information
■
S
Methods for the synthesis and spectral data of smSNARE
probes 3, 4, and 5. Data for enzymatic evaluation and detection
of GSH conjugates of 3, 4, and 5. Microscopy images of
surfaces, general protocols for immobilization, and additional
controls for GST immobilization. Cloning and biochemical
steps for preparation and expression of pGEX-isnA. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(17) Sollner, T., Whitehart, S. W., Brunner, M., Erdjumentbromage,
H., Geromanos, S., Tempst, P., and Rothman, J. E. (1993) SNAP
receptors implicated in vesicle targeting and fusion. Nature 362, 318−
324.
(18) Frangioni, J. V., and Neel, B. G. (1993) Solubilization and
purification of enzymatically active glutathione S-transferase (pGEX)
fusion proteins. Anal. Biochem. 210, 179−187.
(19) Mannervik, B., and Jensson, H. (1982) Binary combinations of
four protein subunits with different catalytic specificities explain the
relationship between six basic glutathione S-transferases in rat liver
cytosol. J. Biol. Chem. 257, 9909−9912.
(20) Jakobson, I., Warholm, M., and Mannervik, B. (1979) The
binding of substrates and a product of the enzymatic reaction to
glutathione S-transferase A. J. Biol. Chem. 254, 7085−7089.
(21) Moron, M. S., Depierre, J. W., and Mannervik, B. (1979) Levels
of glutathione, glutathione reductase and glutathione S-transferase
activities in rat lung and liver. Biochim. Biophys. Acta 582, 67−78.
(22) Armstrong, R. N. (1997) Structure, catalytic mechanism, and
evolution of the glutathione transferases. Chem. Res. Toxicol. 10, 2−18.
(23) Ji, X., Armstrong, R. N., and Gilliland, G. L. (1993) Snapshots
along the reaction coordinate of an SNAr reaction catalyzed by
glutathione transferase. Biochemistry 32, 12949−12954.
(24) Habig, W. H., Pabst, M. J., and Jakoby, W. B. (1974)
Glutathione S-transferases. The first enzymatic step in mercapturic
acid formation. J. Biol. Chem. 249, 7130−7139.
(25) Fujikawa, Y., Urano, Y., Komatsu, T., Hanaoka, K., Kojima, H.,
Terai, T., Inoue, H., and Nagano, T. (2008) Design and synthesis of
highly sensitive fluorogenic substrates for glutathione S-transferase
(GST) and application for activity imaging in living cells. J. Am. Chem.
Soc. 130, 14533−14543.
ACKNOWLEDGMENTS
■
The authors thank CWRU for funding this study. Authors
thank Drs. Dale Ray (CWRU, NMR) and Jon Karty (IU, MS)
for providing instrumentation support. Authors thank Prof. C.
Dale Poulter (Utah) and Dr. Jin Soo Seo (Utah) for generously
gifting chambers for slide modifications. Authors thank
̀ ́
Zhengao Mao and Prof. Genevieve Sauve (CWRU) for
discussions on AFM imaging. Authors thank Prof. Liming Dai
(CWRU) for contact angle measurements. Authors thank Prof.
Guillermo R. Labadie (IQUIR-CONICET) and Dr. Sucharita
Kundu (Utah) for discussions. Authors thank Prof. Gregory
Tochtrop (CWRU) for support with LC-MS analyses. Authors
thank Dr. Ulatowski (CWRU) and Prof. John Mieyal (CWRU)
for generous gift of anti-GST antibody.
REFERENCES
■
(1) Phizicky, E., Bastiaens, P. I. H., Zhu, H., Snyder, M., and Fields, S.
(2003) Protein analysis on a proteomic scale. Nature 422, 208−215.
(2) Zhu, H., and Snyder, M. (2003) Protein chip technology. Curr.
Opin. Chem. Biol. 7, 55−63.
(3) Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A.,
Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell,
T., Miller, P., Dean, R. A., Gerstein, M., and Snyder, M. (2001) Global
analysis of protein activities using proteome chips. Science 293, 2101−
2105.
(4) MacBeath, G. (2002) Protein microarrays and proteomics. Nat.
Genet. 32, 526−532.
(26) Lo, W.-J., Chiou, Y.-C., Hsu, Y.-T., Lam, W. S., Chang, M.-Y.,
Jao, S.-C., and Li, W.-S. (2007) Enzymatic and nonenzymatic synthesis
of glutathione conjugates: application to the understanding of a
parasite’s defense system and alternative to the discovery of potent
glutathione S-transferase inhibitors. Bioconjugate Chem. 18, 109−120.
(27) Voelker, A. E. Selective Fusion-Tag-Catalyzed Protein Immobiliza-
tions For Microarray and Biosensor Applications, Ph. D. Thesis, Case
Western Reserve University, Cleveland, OH, August 2013.
(28) Kolodziej, C. M., Chang, C.-W., and Maynard, H. D. (2011)
Glutathione S-transferase as a general and reversible tag for surface
immobilization of proteins. J. Mater. Chem. 21, 1457−1461.
(5) MacBeath, G., and Schreiber, S. L. (2000) Printing proteins as
microarrays for high-throughput function determination. Science 289,
1760−1763.
(6) Johnsson, N., and Johnsson, K. (2003) A fusion of disciplines:
chemical approaches to exploit fusion proteins for functional
genomics. ChemBioChem 4, 803−810.
(7) Yeo, W. S., Min, D. H., Hsieh, R. W., Greene, G. L., and Mrksich,
M. (2005) Label-free detection of protein-protein interactions on
biochips. Angew. Chem., Int. Ed. Engl. 44, 5480−5483.
(8) Stephanopoulos, N., and Francis, M. B. (2011) Choosing an
effective protein bioconjugation strategy. Nat. Chem. Biol. 7, 876−884.
1300
dx.doi.org/10.1021/bc400128g | Bioconjugate Chem. 2013, 24, 1295−1301