ChemComm
Communication
for the highly selective oxidative alkynylation, which will be
quite important and of benefit for designing new reactions.
This work was supported by the 973 Program (2012CB725302)
and the National Natural Science Foundation of China (21025206
and 21272180). We are also grateful for the support from the
Program for Changjiang Scholars and Innovative Research
Team in University (IRT1030).
Notes and references
1 G. Dyker, Handbook of C–H Transformations: Applications in Organic
Synthesis, 2005, vol. 2.
2 (a) J. A. Ashenhurst, Chem. Soc. Rev., 2010, 39, 540–548; (b) X. Chen,
K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem., Int. Ed., 2009,
48, 5094–5115; (c) S. H. Cho, J. Y. Kim, J. Kwak and S. Chang, Chem.
Soc. Rev., 2011, 40, 5068–5083; (d) C.-J. Li, Acc. Chem. Res., 2009, 42,
335–344; (e) C. Liu, H. Zhang, W. Shi and A. Lei, Chem. Rev., 2011,
111, 1780–1824; ( f ) C. S. Yeung and V. M. Dong, Chem. Rev., 2011,
111, 1215–1292; (g) S.-l. You and J.-B. Xia, Top. Curr. Chem., 2010,
292, 165–194.
3 A. R. Katritzky, Comprehensive heterocyclic chemistry III, Elsevier,
Amsterdam, New York, 2008.
4 (a) M. Adamczyk, D. D. Johnson and R. E. Reddy, Angew. Chem., Int.
Ed., 1999, 38, 3537–3539; (b) T. Lindel, M. Hochguertel, M. Assmann
and M. Koeck, J. Nat. Prod., 2000, 63, 1566–1569.
Scheme 4 Proposed mechanism for the silver-mediated oxidative cross-coupling/
cyclization.
CRC stretching mode of phenylacetylene 1a (2110 cmꢀ1) is red
shifted to 1983 cmꢀ1. This suggests that alkynyl carbon binds
covalently with silver and that the CRC bond is weakened by
electron transfer from the silver to the p* orbital of 1a.13 The
above results clearly revealed that silver acetylide (complex I)
was formed easily by the reaction of 1a and Ag2CO3.
According to the above information, a proposed mechanism
is outlined in Scheme 4. Initially, silver acetylide (complex I)
was formed by the reaction of terminal alkyne and Ag2CO3.
Then DBU could promote the monomerization of the polymeric
silver acetylide yielding the active nonpolymeric species
complex II (Fig. S4 in the ESI†), possibly aggregated with
additional Ag(I). Meanwhile, b-enamino esters were deproto-
nated by DBU to afford intermediate III (Fig. S5 in the ESI†),
which could undergo nucleophilic attack on complex II to give
the oxidative cross-coupling intermediate IV via two single-
electron oxidation. Finally, catalyzed by the silver species, the
cycloisomerization process could be facile and afford the final
pyrrole product.
5 (a) H. Miyaji, W. Sato and J. L. Sessler, Angew. Chem., Int. Ed., 2000,
39, 1777–1780; (b) D.-W. Yoon, H. Hwang and C.-H. Lee, Angew.
Chem., Int. Ed., 2002, 41, 1757–1759.
´
´
6 (a) R. Martın, M. Rodrıguez Rivero and S. L. Buchwald, Angew.
Chem., Int. Ed., 2006, 45, 7079–7082; (b) D.-L. Mo, C.-H. Ding,
L.-X. Dai and X.-L. Hou, Chem.–Asian J., 2011, 6, 3200–3204;
(c) R.-L. Yan, J. Luo, C.-X. Wang, C.-W. Ma, G.-S. Huang and
Y.-M. Liang, J. Org. Chem., 2010, 75, 5395–5397; (d) S. Rakshit, F. W.
Patureau and F. Glorius, J. Am. Chem. Soc., 2010, 132, 9585–9587;
(e) S. Su and J. A. Porco, J. Am. Chem. Soc., 2007, 129, 7744–7745;
( f ) X. Wan, D. Xing, Z. Fang, B. Li, F. Zhao, K. Zhang, L. Yang and
Z. Shi, J. Am. Chem. Soc., 2006, 128, 12046–12047; (g) S. Cacchi,
G. Fabrizi and E. Filisti, Org. Lett., 2008, 10, 2629–2632; (h) W.-B. Liu,
H.-F. Jiang and L.-B. Huang, Org. Lett., 2010, 12, 312–315;
(i) J. T. Kim, A. V. Kel’in and V. Gevorgyan, Angew. Chem., Int. Ed.,
2003, 42, 98–101.
7 (a) M. Gao, C. He, H. Chen, R. Bai, B. Cheng and A. Lei,
Angew. Chem., Int. Ed., 2013, 52, 6958–6961; (b) J. Liu, Z. Fang,
Q. Zhang, Q. Liu and X. Bi, Angew. Chem., Int. Ed., 2013, 52,
6953–6957.
8 M. J. Tredwell, M. Gulias, N. Gaunt Bremeyer, C. C. C. Johansson,
B. S. L. Collins and M. J. Gaunt, Angew. Chem., Int. Ed., 2011, 50,
1076–1079.
9 (a) C. A. Correia and C.-J. Li, Heterocycles, 2010, 82, 555–562;
(b) C. He, S. Guo, J. Ke, J. Hao, H. Xu, H. Chen and A. Lei, J. Am.
Chem. Soc., 2012, 134, 5766–5769; (c) X. Zhang, B. Liu, X. Shu,
Y. Gao, H. Lv and J. Zhu, J. Org. Chem., 2012, 77, 501–510; (d) C. He,
J. Hao, H. Xu, Y. Mo, H. Liu, J. Han and A. Lei, Chem. Commun.,
2012, 48, 11073–11075.
In summary, we have developed a novel silver-mediated
synthesis of polysubstituted pyrroles by the oxidative cross-
coupling/cyclization of terminal alkynes with b-enamino esters.
From the synthetic point of view, this protocol represents a
10 V. Estevez, M. Villacampa and J. C. Menendez, Chem. Commun.,
2013, 49, 591–593.
simple, efficient and selective way to construct polysubstituted 11 U. Halbes-Letinois, J.-M. Weibel and P. Pale, Chem. Soc. Rev., 2007,
36, 759–769.
pyrroles in good yields, which complements the facile approach
for the rapid construction of polyfunctional heterocycles. This
12 J. A. Allen and P. H. Scaife, Aust. J. Chem., 1966, 19, 715–724.
13 P. Maity, T. Wakabayashi, N. Ichikuni, H. Tsunoyama, S. Xie,
work also demonstrates that silver can act as a ‘‘key-mediator’’
M. Yamauchi and T. Tsukuda, Chem. Commun., 2012, 48, 6085–6087.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 7549--7551 7551