Total Synthesis of Epoxyqueuosine
Acknowledgments
The authors thank the Deutsche Forschungsgemeinschaft (DFG)
(grant number CA275 8/4 and DFB749) for financial support. In-
frastructure was provided by the Excellence Cluster ECX114. The
authors thank Daniel Globisch for mass spectrometric studies.
[1] H. Kasai, K. Nakanishi, R. D. Macfarlane, D. F. Torgerson, Z.
Ohashi, J. A. McCloskey, H. J. Gross, S. Nishimura, J. Am.
Chem. Soc. 1976, 98, 5044–5046.
[2] B. Frey, J. McCloskey, W. Kersten, H. Kersten, J. Bacteriol.
1988, 170, 2078–2082.
[3] R. K. Slany, M. Bösl, P. F. Crain, H. Kersten, Biochemistry
1993, 32, 7811–7817.
[4] S. G. Van Lanen, S. D. Kinzie, S. Matthieu, T. Link, J. Culp,
D. Iwata-Reuyl, J. Biol. Chem. 2003, 278, 10491–10499.
[5] F. Harada, S. Nishimur, Biochemistry 1972, 11, 301–308.
[6] D. W. Phillipson, C. G. Edmonds, P. F. Grain, D. L. Smith,
D. R. Davis, J. A. McCloskey, J. Biol. Chem. 1987, 262, 3462–
3471.
Figure 2. (a) HR-mass signal of Q after enzymatic digest of bulk
tRNA extracted from E. coli under full medium conditions.
(b) HR-mass signal of oQ after enzymatic digest of an E. coli ex-
tract obtained under minimal medium conditions. (c) HR-mass sig-
nal of oQ after enzymatic digest under minimal medium conditions
with synthetic oQ spiked into the sample.
thesized oQ (1) into the digest obtained under minimum
medium conditions and again analyzed the nucleoside mix-
ture by LC–MS. In the mass range for oQ, we detected just
one signal (Figure 2, c), which firmly established that the
synthesized compound and the natural product are iden-
tical.
[7] S. Daoud Kinzie, B. Thern, D. Iwata-Reuyl, Org. Lett. 2000, 2,
1307–1310.
[8] Z. D. Miles, R. M. McCarty, G. Molnar, V. Bandarian, Proc.
Natl. Acad. Sci. USA 2011, 108, 7368–7372.
[9] J. P. Reyniers, J. R. Pleasants, B. S. Wostmann, J. R. Katzel,
W. R. Farkas, J. Biol. Chem. 1981, 256, 11591–11594.
[10] R. C. Morris, M. S. Elliott, Mol. Genet. Metab. 2001, 74, 147–
159.
[11] F. Klepper, E.-M. Jahn, V. Hickmann, T. Carell, Angew. Chem.
2007, 119, 2377–2379; Angew. Chem. Int. Ed. 2007, 46, 2325–
2327.
Conclusions
[12] T. Brückl, I. Thoma, A. J. Wagner, P. Knochel, T. Carell, Eur.
J. Org. Chem. 2010, 6517–6519.
[13] G. B. Payne, J. Org. Chem. 1962, 27, 3819–3822.
[14] H. Ovaa, J. D. C. Codée, B. Lastdrager, H. S. Overkleeft, G. A.
van der Marel, J. H. van Boom, Tetrahedron Lett. 1998, 39,
7987–7990.
In conclusion, we report here the first total synthesis of
the hypermodified tRNA nucleoside oQ (1), which is the
direct biosynthetic precursor of Q (2). With the help of the
synthetic material we confirmed the structure of oQ. The
synthetic availability of oQ now paves the way for a detailed
enzymatic analysis of the mechanism employed by the vita-
min B12 dependent enzyme QueG.
[15] F. C. Neidhard, P. L. Bloch, D. F. Smith, J. Bacteriol. 1974,
119, 736–747.
[16] T. Brückl, D. Globisch, M. Wagner, M. Müller, T. Carell, An-
gew. Chem. 2009, 121, 8074–8077; Angew. Chem. Int. Ed. 2009,
48, 7932–7934.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and spectroscopic data for the com-
pounds prepared.
Received: April 23, 2013
Published Online: June 7, 2013
Eur. J. Org. Chem. 2013, 4483–4485
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4485