Table 1. Optimization of the Reaction Conditionsa
Scheme 1. Oxidative Tandem Cyclization/1,2-Alkyl Migration
of Enamino Amide
entry
catalyst
oxidant additive
solvent
yield (%)
1
Cu(TFA)2
Cu(TFA)2
Cu(TFA)2
Cu(TFA)2
Cu(TFA)2
Cu(TFA)2
Cu(TFA)2
Cu(TFA)2
Cu(TFA)2
Cu(TFA)2
Cu(OAc)2
Cu(OTf)2
Cu(TFA)2
Cu(TFA)2
Cu(TFA)2
Cu(TFA)2
AgOAc
Ag2CO3
BQ
CH3CN
CH3CN
CH3CN
CH3CN
CH3CN
CH3CN
1,4-dioxane
toluene
CH3OH
DCE
12
0
2
3
0
4
DDQ
0
of azaheterocycles8 prompted us to study the oxidative
cyclization of enamines. Unexpectedly, pyrrolin-4-one was
observed when the cyclization of enamino amides was
conducted in the presence of a Cu(TFA)2 catalyst
(Scheme 1). We assumed that it was generated from the
intermolecular oxidative cyclization of enamino amide 1a
subsequent to 1,2-methyl migration. The pyrrolin-4-one
scaffold is a class of valuable azaheterocycles that is
prevalent in many pharmaceuticals and biologically active
compounds.9 Despite a few synthetic methods that have
been recently developed for the synthesis of pyrrolin-4-
ones,10 versatile and efficient methods for the direct con-
struction of pyrrolin-4-one scaffolds that are compatible
with various functional groups and use readily available
starting materials are rare. In this paper, we report a
Cu(TFA)2-catalyzed oxidative tandem cyclization/1,2-al-
kyl migration of enamino amides that we developed for the
synthesis of pyrrolin-4-ones.
5
DTBP
TBHP
TBHP
TBHP
TBHP
TBHP
TBHP
TBHP
23
36
31
29
11
26
8
6
7
8
9
10
11
12
13
14
15
16b
CH3CN
CH3CN
CH3CN
CH3CN
CH3CN
CH3CN
CH3CN
CH3CN
CH3CN
0
TBHP
TBHP
TBHP
TBHP
TBHP
AcOH
PivOH
TFA
35
33
49
57
65
71
52,e
(39)f
0
TFA
17b,c Cu(TFA)2
TFA
18c,d Cu(TFA)2 TBHP
TFA
TFA
19c
Cu(TFA)2
TBHP
20
ꢀ
TBHP
TFA
CH3CN
a Reaction conditions: (Z)-3-amino-N-phenylbut-2-enamide 1a
(0.4 mmol), [Cu] (10 mol %), oxidant (0.5 equiv), additive (0.5 equiv)
in solvent (3 mL) at 80 °C for 2 h; isolated yields. b Cu(TFA)2 (5 mol %).
c TBHP (0.25 equiv) (70% in water). d Cu(TFA)2 (2.5 mol %). e Cu-
(TFA)2 (1.0 mol %). f Cu(TFA)2 (0.5 mol %).
We began our study by investigating the copper-cata-
lyzed oxdative cyclization of 3-amino-N-phenylbut-2-en-
amide 1a in the presence of AgOAc under a balloon
pressure of O2.11 Unexpectedly, pyrrolin-4-one, which
may be from intermolecular oxidative cyclization of
enamino amide 1a subsequent to 1,2-methyl migration,
was obtained at a yield of 12%.10c The structure of product
2a was confirmed by X-ray diffraction analysis (Scheme 1).
This result promoted us to optimize reaction conditions
in order to develop a synthetically useful process for the
synthesis of substituted pyrrolin-4-ones.
(7) (a) Xu, X.; Qian, Y.; Zavalij, P. Y.; Doyle, M. P. J. Am. Chem.
Soc. 2013, 135, 1244. (b) Nguyen, Q.; Nguyen, T.; Driver, T. G. J. Am.
Chem. Soc. 2013, 135, 620. (c) Miura, T.; Funakoshi, Y.; Morimoto, M.;
Biyajima, T.; Murakami, M. J. Am. Chem. Soc. 2012, 134, 17440. (d) Li,
W.; Li, Y.; Zhou, G.; Wu, X.; Zhang, J. Chem.;Eur. J. 2012, 18, 15113.
(e) Li, W.; Li, Y.; Zhang, J. Chem.;Eur. J. 2010, 16, 6447. (f) Lebuf, D.;
Gandon, V.; Ciesielski, J.; Frontier, A. J. J. Am. Chem. Soc. 2012, 134,
6296. (g) Yang, Y.-F.; Shu, X.-Z.; Luo, J.-Y.; Ali, S.; Liang, Y.-M.
Chem.;Eur. J. 2012, 18, 8600. (h) Shu, X.-Z.; Liu, X.-Y.; Ji, K.-G.;
Xiao, H.-Q.; Liang, Y.-M. Chem.;Eur. J. 2008, 14, 5282.
(8) (a) Liang, H.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Chem.;
Eur. J. 2013, 19, 9789. (b) Zhao, M.-N.; Liang, H.; Ren, Z.-H.; Guan,
Z.-H. Adv. Synth. Catal. 2013, 355, 221. (c) Zhao, M.-N.; Ren, Z.-H.;
Wang, Y. Y.; Guan, Z.-H. Chem. Commun. 2012, 48, 8105. (d) Li, L.;
Zhao, M.-N.; Ren, Z.-H.; Li, J.; Guan, Z.-H. Org. Lett. 2012, 14, 3506.
(e) Li, L.; Zhao, M.-N.; Ren, Z.-H.; Li, J.; Guan, Z.-H. Synthesis 2012,
44, 532. (f) Guan, Z.-H.; Li, L.; Ren, Z.-H.; Li, J.; Zhao, M.-N. Green.
Chem. 2011, 13, 1664. (g) Guan, Z.-H.; Yan, Z.-Y.; Ren, Z.-H.; Liu,
X.-Y.; Liang, Y.-M. Chem. Commun. 2010, 46, 2823.
Then, a series of oxidants, such as Ag2CO3, BQ, DDQ,
DTBP, and TBHP, were screened to determine if they
improved the reaction efficiency (Table 1, entries 2ꢀ6).
TBHP was found to be the most effective of the screened
oxidants. By screening various solvents, such as 1, 4-diox-
ane, toluene, CH3OH, and DCE, we found that CH3CN is
the most effective at increasing the reaction yield (Table 1,
entries 7ꢀ10). In contrast, no reaction was observed in the
presence of the Cu(OTf)2 catalyst, and only an 8% yield of
2a was obtained when Cu(OAc)2 was used as the catalyst
(Table 1, entries 11ꢀ12). To further improve the reaction
outcome, acid additives were screened. TFA proved to be
an active additive in the reaction and resulted in a 49%
yield of 2a (Table 1, entries 13ꢀ15). Finally, we found that
the catalyst loading as well as TBHP loading play an
important role in the reaction (Table 1, entries 16ꢀ18).
2.5 mol % of Cu(TFA)2 and 0.25 equiv of TBHP give the
highest yields of 2a (Table 1, entry 18). However, further
decreasing of the catalyst loading resulted in a long
(9) (a) Smith, A. B., III; Charnley, A. K.; Hirschmann, R. Acc. Chem.
Res. 2011, 44, 180. (b) Saudi, M. N. S.; El Semary, M. M. A.; El Sawaf,
G. Pharmazie 2002, 57, 519.
(10) (a) Spina, R.; Colacino, E.; Gabriele, B.; Salerno, G.; Martinez, J.;
Lamaty, F. J. Org. Chem. 2013, 78, 2698. (b) Wang, Z.; Bi, X.; Liao, P.;
Dong, D. Chem. Commun. 2013, 49, 1309. (c) Huang, J.; Liang, Y.; Pan, W.;
Yang, Y.; Dong, D. Org. Lett. 2007, 9, 5345. (d) Gouault, N.; Roch, M. L.;
ꢀ
Cornee, C.; David, M.; Uriac, P. J. Org. Chem. 2009, 74, 5614.
(11) (a) Liu, W.; Jiang, H.; Huang, L. Org. Lett. 2010, 12, 312. (b)
Wang, J.-Y.; Wang, X.-P.; Yu, Z.-S.; Yu, W. Adv. Synth Catal. 2009,
351, 2063. (c) Wang, J.-Y.; Liu, S.-P.; Yu, W. Synlett 2009, 2529. (d)
Tsai, A.; Chuang, C.-P. Tetrahedron 2006, 62, 2235.
B
Org. Lett., Vol. XX, No. XX, XXXX