ChemComm
Communication
toward HepG2 cancer cells and A431 tumour tissues. The
conjugates contain both photodynamic and targeting anti-
cancer therapy agents which are covalently linked and function
in a cooperative manner. The introduction of the erlotinib
moiety can enhance the specificity of phthalocyanine units to
HepG2 cancer cells and A431 tumour tissues. The IC50 value of
the conjugates is as low as 0.01 mM toward the HepG2 cells,
which is equivalent to that of the reference compound 4 without
the erlotinib derivative. The tumour/skin ratio of the conjugate
is actually about 5-fold higher than that of reference 4. The
overall results show that the conjugates are highly promising
antitumour agents for dual targeting and photodynamic therapy.
This may provide a novel targeting strategy for PDT, as well as
other cancer therapy modalities.
Fig. 1 Confocal fluorescence images of mixed HepG2 and HELF cells after
incubation with 3a, 3b and 4 for 24 h (all at 10 mM); (b) comparison of relative
intracellular average fluorescence intensity of phthalocyanines in HepG2 and
HELF cells (measured in the ROIs). Data are expressed as means ꢂ SD. Statistical
significance **(P o 0.01).
We thank the Natural Science Foundation of China (Project
No. 21101028), the Major Project of the State Ministry of
Science and Technology of China (Project No. 2011ZX09101-
001-04), and the Natural Science Foundation of Fujian Province
(Project No. 2012J05021) for financial support.
Notes and references
1 (a) D. E. J. G. J. Dolmans, D. Fukumura and R. K. Jain, Nat. Rev.
Cancer, 2003, 3, 380; (b) A. P. Castano, P. Mroz and M. R. Hamblin,
Nat. Rev. Cancer, 2006, 6, 535.
2 (a) N. Rousset, L. Bourre and S. Thibaud, Sensitizers in Photodynamic
Therapy, ed. T. Patrice, The Royal Society of Chemistry, London,
2003, vol. 2, p. 59; (b) N. Brasseur, Sensitizers for Photodynamic
Therapy: phthalocyanines, ed. T. Patrice, The Royal Society of Chem-
istry, London, 2003, vol. 2, p. 105.
3 (a) J. F. Lovell, T. W. B. Liu, J. Chen and G. Zheng, Chem. Rev., 2010,
110, 2839; (b) A. M. Bugaj, Photochem. Photobiol. Sci., 2011, 10, 1097.
4 (a) S. Y. Park, H. J. Baik, Y. T. Oh, K. T. Oh, Y. S. Youn and E. S. Lee,
Angew. Chem., Int. Ed., 2011, 50, 1644; (b) G. Obaid, I. Chambrier,
M. J. Cook and D. A. Russell, Angew. Chem., Int. Ed., 2012, 51, 6158;
(c) M. Yin, Z. Li, Z. Liu, J. Ren, X. Yang and X. Qu, Chem. Commun.,
2012, 48, 6556.
5 (a) M. B. Vrouenraets, G. W. M. Visser, M. Stigter, H. Oppelaar,
G. B. Snow and G. A. M. S. van Dongen, Int. J. Cancer, 2002, 98, 793;
(b) M. B. Vrouenraets, G. W. M. Visser, M. Stigter, H. Oppelaar,
G. B. Snow and G. A. M. S. van Dongen, Cancer Res., 2001, 61, 1970.
6 (a) U. Schmidt-Erfurth, H. Diddens, R. Birngruber and T. Hasan,
Br. J. cancer, 1997, 75, 54; (b) P. Urizzi, C. M. Allen, R. Langlois,
R. Ouellet, C. La Madeleine and J. E. Van Lier, J. Porphyrins Phthalo-
cyanines, 2001, 5, 154.
Fig. 2 In vivo FMT of 3a and 4. (a) Injected with 3a, (b) injected with 4,
(c) comparison of the average value of the tumour/skin biodistribution ratio of
3a and 4. Values are means ꢂ SD. Statistical significance **(P o 0.01), *(P o 0.05).
7 (a) L. Tirand, C. Frochot, R. Vanderesse, N. Thomas, E. Trinquet,
S. Pinel, M.-L. Viriot, F. Guillemin and M. Barberi-Heyob,
J. Controlled Release, 2006, 111, 153; (b) M. Sibrian-Vazquez,
T. J. Jensen and M. G. H. Vicente, J. Med. Chem., 2008, 51, 2915.
8 (a) M. R. Hamblin and E. L. Newman, J. Photochem. Photobiol., B, 1994,
26, 45; (b) P. G. Cavanaugh, Breast Cancer Res. Treat., 2002, 72, 117.
9 (a) Y. Gao, G. Qiao, L. Zhuo, N. Li, Y. Liu and B. Tang, Chem.
Commun., 2011, 47, 5316; (b) P. Mallikaratchy, Z. Tang and W. Tan,
ChemMedChem, 2008, 3, 425.
To further confirm the specificity of the conjugates to tumour
tissues, the in vivo fluorescence imaging was also performed by
in vivo fluorescence molecular tomography (FMT) using the
FMTt 2500 system (PerkinElmer Inc.) at 680/700 nm excita-
tion/emission wavelength. 3a and 4 were injected into nude mice
bearing A431 tumour through the tail vein. As shown in Fig. 2, 3a
exhibited quick accumulation in tumour tissues in 2.5 hours and
10 K. Cho, X. Wang, S. Nie and D. M. Shin, Clin. Cancer Res., 2008, 14, 1310.
then gradually decreased (Fig. 2a). However, compound 4 in 11 S. Verma, G. M. Watt, Z. Mai and T. Hasan, Photochem. Photobiol.,
2007, 83, 996.
tumour tissues is rare and no obvious accumulation appeared
along with time (Fig. 2b). The total amount of 3a in the tumour is
12 (a) A. Zelent, K. Petrie, Z. Chen, R. Lotan, M. Lu¨bbert, M. S. Tallman,
R. Ohno, L. Degos and S. Waxman, Cancer Res., 2005, 65, 1117;
visibly higher than that of 4 (Fig. 2c) and the tumour/skin ratio of
3a is actually about 5-fold higher than that of 4 at 2.5 hours after
administration, which confirms that conjugate 3a has a high
selective affinity to tumour over normal tissues.
In summary, we have synthesised and characterised two
zinc(II) phthalocyanine–erlotinib conjugates and evaluated
their in vitro photodynamic activities and selective affinity
(b) K. Imai and A. Takaoka, Nat. Rev. Cancer, 2006, 6, 714.
13 (a) M. A. Fabian, W. H. Biggs, D. K. Treiber, C. E. Atteridge,
M. D. Azimioara, M. G. Benedetti, T. A. Carter, P. Ciceri, P. T. Edeen
and M. Floyd, Nat. Biotechnol., 2005, 23, 329; (b) J. Zhang, P. L. Yang and
N. S. Gray, Nat. Rev. Cancer, 2009, 9, 28.
14 J. T. Lau, P.-C. Lo, W.-P. Fong and D. K. Ng, J. Med. Chem., 2012,
55, 5446.
15 A. W. Snow, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith
and R. Guilard, Academic Press, San Diego, 2003, ch. 109, vol. 17.
c
9572 Chem. Commun., 2013, 49, 9570--9572
This journal is The Royal Society of Chemistry 2013