Journal of Medicinal Chemistry
Article
(18) Joseph-McCarthy, D.; Parris, K.; Huang, A.; Failli, A.; Quagliato,
D.; Dushin, E. G.; Novikova, E.; Severina, E.; Tuckman, M.; Petersen,
P. J.; Dean, C.; Fritz, C. C.; Meshulam, T.; DeCenzo, M.; Dick, L.;
McFadyen, I. J.; Somers, W. S.; Lovering, F.; Gilbert, A. M. Use of
structure-based drug design approaches to obtain novel anthranilic
acid acyl carrier protein synthase inhibitors. J. Med. Chem. 2005, 48,
7960−7969.
(19) Yasgar, A.; Foley, T. L.; Jadhav, A.; Inglese, J.; Burkart, M. D.;
Simeonov, A. A strategy to discover inhibitors of Bacillus subtilis
surfactin-type phosphopantetheinyl transferase. Mol. BioSyst. 2010, 6,
365−375.
(20) Lewandowicz, A. M.; Vepsalainen, J.; Laitinen, J. T. The
‘allosteric modulator’ SCH-202676 disrupts G protein-coupled
receptor function via sulphydryl-sensitive mechanisms. Br. J.
Pharmacol. 2006, 147, 422−429.
(21) Matsushima, T.; Takahashi, K.; Funasaka, S.; Obaishi, H. Novel
pyridine derivative and pyrimidine derivative. U.S. Patent 12,558,982,
Sept 14, 2009.
(22) Sammond, D. M.; Nallor, K. E.; Veal, J. M.; Nolte, R. T.; Wang,
L. P.; Knick, V. B.; Rudolph, S. K.; Truesdale, A. T.; Nartey, E. N.;
Stafford, J. A.; Kumar, R.; Cheung, M. Discovery of a novel and potent,
and urea isostere inhibitors series of dianilinopyrimidineurea of
VEGFR2 tyrosine kinase. Bioorg. Med. Chem. Lett. 2005, 15, 3519−
3523.
(23) Trinka, P.; Reiter, J. A convenient large-scale synthesis of ethyl
(2-cyanoimino-5,6-dichloro-1,2,3,4-tetrahydroquinazoline-3-yl)acetate.
J. Prakt. Chem./Chem.-Ztg. 1997, 339, 750−753.
(24) Pohl, M.; Bechstein, U.; Patzel, M.; Liebscher, J.; Jones, P. G.
Synthesis of partially saturated condensed triazoles by reaction of ω-
aminoalkyl-1,2,4-triazoles with electrophiles. J. Prakt. Chem./Chem.-
Ztg. 1992, 334, 630−636.
(25) Chan, D. M. T.; Monaco, K. L.; Li, R. H.; Bonne, D.; Clark, C.
G.; Lam, P. Y. S. Copper promoted C-N and C-O bond cross-coupling
with phenyl and pyridylboronates. Tetrahedron Lett. 2003, 44, 3863−
3865.
(26) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M.
P.; Chan, D. M. T.; Combs, A. New aryl/heteroaryl C-N bond cross-
coupling reactions via arylboronic acid cupric acetate arylation.
Tetrahedron Lett. 1998, 39, 2941−2944.
(27) Quach, T. D.; Batey, R. A. Ligand- and base-free copper(II)-
catalyzed C−N bond formation: Cross-coupling reactions of organo-
boron compounds with aliphatic amines and anilines. Org. Lett. 2003,
5, 4397−4400.
(28) Shafir, A.; Buchwald, S. L. Highly selective room-temperature
copper-catalyzed C−N coupling reactions. J. Am. Chem. Soc. 2006,
128, 8742−8743.
(29) Inglese, J.; Auld, D. S.; Jadhav, A.; Johnson, R. L.; Simeonov, A.;
Yasgar, A.; Zheng, W.; Austin, C. P. Quantitative high-throughput
screening: A titration-based approach that efficiently identifies
biological activities in large chemical libraries. Proc. Natl. Acad. Sci.
U.S.A. 2006, 103, 11473−11478.
(30) Takiff, H. E.; Baker, T.; Copeland, T.; Chen, S. M.; Court, D. L.
Locating essential Escherichia coli genes by using mini-Tn10
transposons: The pdxJ operon. J. Bacteriol. 1992, 174, 1544−1553.
(31) Lambalot, R. H.; Walsh, C. T. Cloning, overproduction, and
characterization of the Escherichia coli holo-acyl carrier protein
synthase. J. Biol. Chem. 1995, 270, 24658−24661.
(32) Mootz, H. D.; Finking, R.; Marahiel, M. A. 4′-Phosphopante-
theine transfer in primary and secondary metabolism of Bacillus
subtilis. J. Biol. Chem. 2001, 276, 37289−37298.
(33) Borra, M. T.; Smith, B. C.; Denu, J. M. Mechanism of human
SIRT1 activation by resveratrol. J. Biol. Chem. 2005, 280, 17187−
17195.
binding; PK, pharmacokinetics; GSH, glutathione; LOPAC,
Library of Pharmacologically Active Compounds
REFERENCES
■
(1) Miller, A. A.; Miller, P. F. Emerging Trends in Antibacterial
Discovery: Answering the Call to Arms; Caister Academic Press: Norfolk,
U.K., 2011.
(2) Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L.
Drugs for bad bugs: Confronting the challenges of antibacterial
discovery. Nat. Rev. Drug Discovery 2007, 6, 29−40.
(3) Silver, L. L. Challenges of antibacterial discovery. Clin. Microbiol.
Rev. 2011, 24, 71−109.
(4) Lambalot, R. H.; Gehring, A. M.; Flugel, R. S.; Zuber, P.; LaCelle,
M.; Marahiel, M. A.; Reid, R.; Khosla, C.; Walsh, C. T. A new enzyme
superfamilyThe phosphopantetheinyl transferases. Chem. Biol. 1996,
3, 923−936.
(5) Zhang, Y. M.; White, S. W.; Rock, C. O. Inhibiting bacterial fatty
acid synthesis. J. Biol. Chem. 2006, 281, 17541−17544.
(6) Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.;
Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.;
Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.;
Zhang, C.; Hernandez, L.; Allocco, J.; Basilio, A.; Tormo, J. R.;
Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael,
B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.;
Barrett, J.; Schmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B.
Platensimycin is a selective FabF inhibitor with potent antibiotic
properties. Nature 2006, 441, 358−361.
(7) Torres, A. G.; Redford, P.; Welch, R. A.; Payne, S. M. TonB-
dependent systems of uropathogenic Escherichia coli: Aerobactin and
heme transport and TonB are required for virulence in the mouse.
Infect. Immun. 2001, 69, 6179−6185.
(8) Foley, T. L.; Simeonov, A. Targeting iron assimilation to develop
new antibacterials. Expert Opin. Drug Discovery 2012, 7, 831−847.
(9) Reed, M. B.; Domenech, P.; Manca, C.; Su, H.; Barczak, A. K.;
Kreiswirth, B. N.; Kaplan, G.; Barry, C. E., 3rd. A glycolipid of
hypervirulent tuberculosis strains that inhibits the innate immune
response. Nature 2004, 431, 84−87.
(10) Heinekamp, T.; Thywissen, A.; Macheleidt, J.; Keller, S.;
Valiante, V.; Brakhage, A. A. Aspergillus fumigatus melanins:
interference with the host endocytosis pathway and impact on
virulence. Front. Microbiol. 2012, 3, 440.
(11) Chalut, C.; Botella, L.; de Sousa-D’Auria, C.; Houssin, C.;
Guilhot, C. The nonredundant roles of two 4′-phosphopantetheinyl
transferases in vital processes of mycobacteria. Proc. Natl. Acad. Sci.
U.S.A. 2006, 103, 8511−8516.
(12) Ferreras, J. A.; Stirrett, K. L.; Lu, X.; Ryu, J.-S.; Soll, C. E.; Tan,
D. S.; Quadri, L. E. N. Mycobacterial phenolic glycolipid virulence
factor biosynthesis: Mechanism and small-molecule inhibition of
polyketide chain initiation. Chem. Biol. 2008, 15, 51−61.
(13) Ferreras, J. A.; Ryu, J. S.; Di Lello, F.; Tan, D. S.; Quadri, L. E.
Small-molecule inhibition of siderophore biosynthesis in Mycobacte-
rium tuberculosis and Yersinia pestis. Nat. Chem. Biol. 2005, 1, 29−32.
(14) Flugel, R. S.; Hwangbo, Y.; Lambalot, R. H.; Cronan, J. E., Jr.;
Walsh, C. T. Holo-(acyl carrier protein) synthase and phosphopante-
theinyl transfer in Escherichia coli. J. Biol. Chem. 2000, 275, 959−968.
(15) Chu, M.; Mierzwa, R.; Xu, L.; Yang, S. W.; He, L.; Patel, M.;
Stafford, J.; Macinga, D.; Black, T.; Chan, T. M.; Gullo, V. Structure
elucidation of Sch 538415, a novel acyl carrier protein synthase
inhibitor from a microorganism. Bioorg. Med. Chem. Lett. 2003, 13,
3827−3829.
(16) Gilbert, A. M.; Kirisits, M.; Toy, P.; Nunn, D. S.; Failli, A.;
Dushin, E. G.; Novikova, E.; Petersen, P. J.; Joseph-McCarthy, D.;
McFadyen, I.; Fritz, C. C. Anthranilate 4H-oxazol-5-ones: Novel small
molecule antibacterial acyl carrier protein synthase (AcpS) inhibitors.
Bioorg. Med. Chem. Lett. 2004, 14, 37−41.
(17) Foley, T. L.; Young, B. S.; Burkart, M. D. Phosphopantetheinyl
transferase inhibition and secondary metabolism. FEBS J. 2009, 276,
7134−7145.
(34) Kaeberlein, M.; McDonagh, T.; Heltweg, B.; Hixon, J.;
Westman, E. A.; Caldwell, S. D.; Napper, A.; Curtis, R.; DiStefano,
P. S.; Fields, S.; Bedalov, A.; Kennedy, B. K. Substrate-specific
activation of sirtuins by resveratrol. J. Biol. Chem. 2005, 280, 17038−
17045.
1077
dx.doi.org/10.1021/jm401752p | J. Med. Chem. 2014, 57, 1063−1078