ACCEPTED MANUSCRIPT
[1] O. K. Farha, J. T. Hupp, Rational Design, Synthesis, Purification, and Activation of Metal-Organic Framework Materials, Acc. Chem.
Res. 43 (2010) 1166-1175.
[2] A. Corma, H. Garcia, F. X. L. Xamena, Engineering Metal Organic Frameworks for Heterogeneous Catalysis, Chem. Rev. 110 (2010)
4606-4655.
[3] J. R. Li, R. J. Kuppler, H. C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38 (2009)
1477-1504.
[4] P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Fe´rey, Metal-Organic Frameworks as Efficient Materials for Drug
Delivery, Angew. Chem. Int. Ed. 45 (2006) 5974-5978.
[5] K. M. L. Taylor-Pashow, J. D. Rocca, Z. G. Xie, S. Tran, W. B. Lin, Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-
Organic Frameworks for Imaging and Drug Delivery, J. Am. Chem. Soc. 131 (2009) 14261-14263.
[6] P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K.
Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Fe´rey, P. Couvreur, R. Gref, Porous metal–organic-framework nanoscale carriers
as a potential platform for drug delivery and imaging, Nat. Mater. 9 (2010) 172-178.
[7] G. N. agendrappa, Organic synthesis using clay and clay-supported catalysts, Appl. Clay Sci. 53 (2011) 106-138.
[8] G. R. Desiraju, Organic solid state chemistry, J. Appl. Cryst. 21 (1988) 580.
[9] (a) K.A. Hansford, V. Zanzarova, A. Dorr, W.D. Lubell, Three-Step Solution-Phase Combinatorial Access to 1,2-Disubstitutedand
1,2,5-Trisubstituted Pyrroles from Carboxylic Esters, J. Comb. Chem. 6 (2004) 893-898. (b) A. R. Katritzky, Introduction:ꢀ Heterocycles,
Chem. Rev. 104 (2004) 2125-2126.
[10] (a) G. Heckmann, T. Bach, Synthesis of the Heterocyclic Core of the GE2270Antibiotics and Structure Elucidation of a
MajorDegradation Product, Angew. Chem. Int. Ed. 44 (2005) 1199-1201. (b) E. C. Taylor, R. J. Knopf, R. F. Meyer, A. Holmes, M. L.
Hoefle, Pyrimido [4,5-d]pyrimidines. Part I, J. Am. Chem. Soc. 82 (1960) 5711-5718.
[11] S. Hegde, J. Carter, To Market, To Market-2003, In: A. M. Doherty (ed), Annual Reports in Medicinal Chemistry, Academic Press,
Amesterdam. 39, 2004, pp. 335-368.
[12] P. Sharma, N. Rane, V. K. Gurram, Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential
antimicrobial agents, Bioorg. Med. Chem. Lett. 14 (2004) 4185-4190.
[13] J. P. De la Cruz, T. Carrasco, G. Ortega, F. Sanchez De La Cuesta, Inhibition of ferrous-induced lipid peroxidation by pyrimido-
pyrimidine derivatives in human liver membranes, Lipids. 27 (1992) 192-194.
[14] P. Raddatz, R. Bergmann, DE Patent 360731; Chem. Abstr. 109 (1988) 54786.
[15] N. Kitamura, A. Onishi, EU Patent 163599; Chem. Abstr. 104 (1984) 186439.
[16] S. M. El-Moghazy, D. A. Ibrahim, N. M. Abdelgawad, N. A. H. Farag, A. S. EL-Khouly, Design, Synthesis and Biological Evaluation
of Novel Pyrimido[4,5-d]pyrimidine CDK2 Inhibitors as Anti-Tumor Agents, Sci. Pharm., 79 (2011) 429-448.
[17] (a) S. Majumder, P. Borah, P. J-Bhuyan, An Efficient and Regioselective One-Pot Multi-Component Synthesis of Pyrimido[4,5-
d]pyrimidine Derivatives in Water, Tetrahedron Lett. 55 (2014) 1168-1170. (b) D. Prajapatia, A. J. Thakur, Studies on 6-
[(dimethylamino)methylene]aminouracil: a facileone-pot synthesis of novel pyrimido[4,5-d]pyrimidine derivatives, Tetrahedron Lett. 46
(2005) 1433-1436. (c) A. Mobinikhaledi, T. Mosleh, N. Foroughifar, Triethyl benzyl ammonium chloride (TEBAC) catalyzed solvent-free
one-pot synthesisof pyrimido[4,5-d]pyrimidines, Res. Chem. Intermed. 41 (2015) 2985-2990. (d) F. Matloubi Moghaddam, M. R.
Khodabakhshi, M. Aminaee, Highly efficient synthesis of pyrimido[4,5-d]pyrimidine-2,4-dione derivatives catalyzed by iodine,
Tetrahedron Lett. 55 (2014) 4720-4723.
[18] R. Ghorbani‐Vaghei, N. Sarmast, Green synthesis of new pyrimido[4,5‐d]pyrimidine derivatives using 7‐aminonaphthalene‐1,3‐
disulfonic acid‐functionalized magnetic Fe3O4@SiO2nanoparticles ascatalyst, Appl. Organomet. Chem. 32 (2017) e4003.
[19] S. Badvel, R. Gopireddy, T. Shaik, S. Hasti, V. Tummaluru, N. Chamarthi, An efficient one-pot three-component synthesis of
pyrimido[4,5-d]pyrimidine derivatives in aqueous medium, Chem. Heterocycl. Compd. 51 (2015) 749-753.
[20] (a) M.A. Ghasemzadeh, B. Mirhosseini-Eshkevari, M.H. Abdollahi-basir, MIL-53(Fe) Metal–Organic Frameworks (MOFs) as an
Efficient and Reusable Catalyst for the One‐Pot Four‐Component Synthesis of Pyrano[2,3-c]pyrazoles, Appl. Organomet. Chem., 33
(2019) e4679. (b) M. A. Ghasemzadeh, M. H. Abdollahi-Basr,
Ultrasound-assisted one-pot multi-component synthesis of 2-
pyrrolidinon-3-olates catalyzed by Co3O4@SiO2 core–shell nanocomposite, Green Chem. Lett. Rev. 9 (2016) 156-165. (c) M. A.
Ghasemzadeh, B. Mirhosseini-Eshkevari, M. H. Abdollahi-Basr, Rapid and Efficient One-Pot Synthesis of 3,4-Dihydroquinoxalin-2-
Amine Derivatives Catalyzed by Co3O4@SiO2 Core-Shell Nanoparticles Under Ultrasound Irradiation, Comb. Chem. High Throughput
Screen. 19 (2016) 592-601.
[21] (a) O.G. Jolodar, F. Shirini, M. Seddighi, Introduction of a novel nanosized N-sulfonated Brönsted acidic catalyst for the promotion of
the synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions, RSC Adv. 6 (2016) 26026-
26037. (b) F. Shirini, M. S. N. Langarudi, N. Daneshvar, Preparation of a new DABCO-based ionic liquid [H2-DABCO][H2PO4]2} and its
application in the synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-d]pyrimidinone derivatives, J. Mol. Liq. 234 (2017) 268-278. (c) F.
Shirini, M. S. N. Langarudi, N. Daneshvar, N. Jamasbi, rankhah-Khanghah, Preparation and characterization of [H2-DABCO][ClO4]2 as a
new member of DABCO-based ionic liquids for the synthesis of pyrimido[4,5-b]-quinoline and pyrimido[4,5-d]pyrimidine derivatives, J.
Mol. Struct. 1161 (2018) 366-382.
[22] (a) P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet‐Regi, M. Sebban, F. Taulelle, G. Férey, Flexible Porous
Metal-Organic Frameworks for a Controlled Drug Delivery, J. Am. Chem. Soc. 130 (2008) 6774-6780. (b) M. Pu, Y. Ma, J. Wan, Y.
Wang, J. Wang, M. L. Brusseau, Activation performance and mechanism of a novel heterogeneous persulfate catalyst: metal-organic
framework MIL-53(Fe) with FeII/FeIII mixed-valence coordinatively unsaturated iron center, Catal. Sci. Technol. 7 (2017) 1129-1140.