Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Tomasi, Nat. Prod. Rep., 2016, 33, 80D1;OeI:)10R..10J3.V9Sie/aCwl8mACrtoCicnl1e0,O3Jn0.l6inPBe.
Buisson, P. Demerseman, J. Einhorn, L. Aussepe, B. Zafrani
and R. Royer, Cancer Lett., 1987, 35, 59; f) J. L. Adams, R. S.
Garigipati, M. Sorenson, S. J. Schmidt, W. R. Brian, J. F.
Newton, K. A. Tyrrell, E. Garver, L. A. Yodis, M. Chabot-
Fletcher, M. Tzimas, E. F. Webb, J. J. Breton and D. E.
Griswold, J. Med. Chem., 1996, 39, 5035.
diazoimine from ring-chain isomerism 1 (Scheme 6). Insertion
of I into O-H bond of β-naphthol would afford the inserted
product III via the formation ylide II, along with the
regeneration of rhodium catalyst for the subsequent cycle.
Next, the formed insertion product III gets in to the Yb-
catalytic cycle. Tautomerization of enamide III would give
imine IV, which on activation by Yb(OTf)3 would provide the
intermediate V. Intramolecular cyclization in V from electron
rich ortho-position would form the cation VI. Formation of
fused-dihydrofuran VII and regeneration of Yb-catalyst could
be rationalized via aromatization of VI by loss of proton and
ion exchange. Finally, aerial oxidation of VII would furnish the
expected fused-furan products 3.
2
Selected reference on naphthofuran synthesis: a) L. Xia and
Y. R. Lee, Org. Biomol. Chem., 2013, 11, 6097; b) J. Zhang, J.
Yao, J. Liu, S. Xue, Y. Li and C. Wang, RSC Adv., 2015, 5,
48580; c) X.-C. Huang, F. Wang, Y. Liang and J.-H. Li, Org.
Lett., 2009, 11, 1139; d) J. Huang, W. Wang, H.-Y. He, L. Jian,
H.-Y. Fu, X.-L. Zheng, H. Chen and R.-X. Li, J. Org. Chem.,
2017, 82, 2523; e) C. Huo, X. Xu, J. An, X. Jia, X. Wang and C.
Wang, J. Org. Chem., 2012, 77, 8310; f) V. A. Osyanin, D. V.
Osipov and Y. N. Klimochkin, J. Org. Chem., 2013, 78, 5505;
g) A. Pareek, R. Dada, M. Rana, A. K. Sharma and S.
Yaragorla, RSC Adv., 2016, 6, 89732; h) J. Zhang, X. Zhang, T.
Wang, X. Yao, P. Wang, P. Wang, S. Jing, Y. Liang and Z.
Zhang, J. Org. Chem., 2017, 82, 12097; i) P. Tharra and B.
Baire, Chem. Commun., 2016, 52, 14290; j) M. Jørgensen, F.
C. Krebs and K. Bechgaard, J. Org. Chem., 2000, 65, 8783.
For reviews on azavinyl carbenes: a) B. Chattopadhyay and V.
Gevorgyan, Angew. Chem., Int. Ed., 2012, 51, 862; b) H. M. L.
Davies and J. S. Alford, Chem. Soc. Rev., 2014, 43, 5151; c) P.
Anbarasan, D. Yadagiri and S. Rajasekar, Synthesis, 2014, 46,
3004; d) Y. Jiang, R. Sun, X.-Y. Tang and M. Shi, Chem. –Eur.
J., 2016, 22, 17910; e) Y. Li, H. Yang and H. Zhai, Chem. –Eur.
J., 2018, 24, 12757; f) M. Jia and S. Ma, Angew. Chem., Int.
Ed., 2016, 55, 9134.
Y. Wang, X. Lei and Y. Tang, Synlett, 2015, 26, 2051.
Selected reference on the synthesis of oxygen based
heterocycles: a) A. Boyer, Org. Lett., 2014, 16, 1660; b) J. Fu,
H. Shen, Y. Chang, C. Li, J. Gong and Z. Yang, Chem. –Eur. J.,
2014, 20, 12881; c) H. Shen, J. Fu, J. Gong and Z. Yang, Org.
Lett., 2014, 16, 5588; d) V. N. G. Lindsay, H. M. F. Viart and R.
Sarpong, J. Am. Chem. Soc., 2015, 137, 8368; e) J. M.
Bennett, J. D. Shapiro, K. N. Choinski, Y. Mei, S. M. Aulita, E.
W. Reinheimer and M. M. Majireck, Tetrahedron Lett., 2017,
58, 1117.
3
Scheme 6. Plausible mechanism.
4
5
In conclusion, we have successfully developed a cascade Rh(II)
and Yb(III) catalysis for the transannulation of N-sulfonyl-1,2,3-
triazoles with substituted β-naphthol. The reaction involves
the initial rhodium catalyzed insertion of azavinyl carbene into
O-H bond followed by ytterbium catalyzed annulative C-C bond
formation and concomitant aerial oxidation. The developed
methodology tolerates various functional groups and offers
access to diverse substituted naphthofurans in moderate to
good yield. In addition, this methodology was successfully
extended to the synthesis of benzofurans employing phenols.
O-H inserted product, potential intermediate of the
transformation was isolated to postulate the possible
mechanism. Furthermore, the synthetic utility of this method
was demonstrated through the synthesis of polyhetero
aromatic system.
6
7
8
9
X. Ma, F. Wu, X. Yi, H. Wang and W. Chen, Chem. Commun.,
2015, 51, 6862.
L. Li, X.-H. Xia, Y. Wang, P. P. Bora and Q. Kang, Adv. Synth.
Catal., 2015, 357, 2089.
W.-B. Zhang, S.-D. Xiu and C.-Y. Li, Org. Chem. Front., 2015, 2,
47.
X. Cheng, Y. Yu, Z. Mao, J. Chen and X. Huang, Org. Biomol.
Chem., 2016, 14, 3878.
10 a) D. Yadagiri, A. C. S. Reddy and P. Anbarasan, Chem. Sci.,
2016, 7, 5934; b) D. Yadagiri and P. Anbarasan, Chem. Sci.,
2015, 6, 5847; c) S. Rajasekar, D. Yadagiri and P. Anbarasan,
Chem. –Eur. J., 2015, 21, 17079; d) D. Yadagiri and P.
Anbarasan, Chem. –Eur. J., 2013, 19, 15115; e) S. Rajasekar
and P. Anbarasan, J. Org. Chem., 2014, 79, 8428; f) D.
Yadagiri and P. Anbarasan, Org. Lett., 2014, 16, 2510; g) D.
Yadagiri, M. Chaitanya, A. C. S. Reddy and P. Anbarasan, Org.
Lett., 2018, 20, 3762.
We thank DST-SERB, New Delhi, India (Project No.
EMR/2016/003677/OC) for funding this work. SK and MK
thanks DST-SERB for the NPDF fellowship.
Conflicts of interest
“There are no conflicts to declare”.
11 CCDC 1883925.
12 a) M. Carril, R. SanMartin, E. Domínguez and I. Tellitu, Green
Chem., 2007, 9, 219; b) D. S. Surry and S. L. Buchwald, Chem.
Sci., 2010, 1, 13.
Notes and references
13 a) T. Deng, H. Wang and C. Cai, Eur. J. Org. Chem., 2015,
2015, 1569; b) N. Battini, S. Battula, R. R. Kumar and Q. N.
Ahmed, Org. Lett., 2015, 17, 2992.
14 S. Chuprakov, B. T. Worrell, N. Selander, R. K. Sit and V. V.
Fokin, J. Am. Chem. Soc., 2014, 136, 195.
1
a) V. Srivastava, A. S. Negi, J. K. Kumar, U. Faridi, B. S. Sisodia,
M. P. Darokar, S. Luqman and S. P. S. Khanuja, Bioorg. Med.
Chem. Lett., 2006, 16, 911; b) R. Le Guével, F. Oger, A.
Lecorgne, Z. Dudasova, S. Chevance, A. Bondon, P. Barath, G.
Simonneaux and G. Salbert, Bioorg. Med. Chem., 2009, 17,
7021; c) M. Hofnung, P. Quillardet, V. Michel and E. Touati,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins