760
S. Deng, C.-W. T. Chang
LETTER
Ph
SPh
Acknowledgment
O
O
H3C
BnO
O
We acknowledge Frontier Scientific Inc. for generous financial
support.
BnO
OBn
O
O
SPh
21
BzO
1
a
61%
References and Notes
H3C
BnO
O
α/β = 8/1
22
(1) (a) Nicolaou, K. C.; Mitchell, H. J. Angew. Chem. Int. Ed.
2001, 40, 1576. (b) Koeller, K. M.; Wong, C.-H. Chem. Rev.
2000, 100, 4465. (c) Lindhorst, T. K. Essentials of
Carbohydrate Chemistry and Biochemistry; Wiley-VCH:
Weinheim, 2003.
BnO
OBn
Ph
O
O
O
O
SPh
b
(2) Feizi, T. Nature (London) 1985, 314, 53.
HO
86%
(3) (a) Lemieux, R. U.; Driguez, H. J. Am. Chem. Soc. 1975, 97,
4069. (b) Love, K. R.; Seeberger, P. H. J. Org. Chem. 2005,
70, 3168.
H3C
BnO
O
23
BnO
OBn
(4) Yi, W.; Shao, J.; Zhu, L.; Li, M.; Singh, M.; Lu, Y.; Lin, S.;
Li, H.; Ryu, K.; Shen, J.; Guo, H.; Yao, Q.; Bush, C. A.;
Wang, P. G. J. Am. Chem. Soc. 2005, 127, 2040.
(5) (a) Gangadharmath, U. B.; Demchenko, A. V. Synlett 2004,
2191. (b) David, S. In Preparative Carbohydrate Chemistry;
Hanessian, S., Ed.; Marcel Dekker Inc.: New York, 1997,
69–83. (c) Gridley, J. J.; Osborn, H. M. I.; Suthers, W. G.
Tetrahedron Lett. 1999, 40, 6991. (d) Osborn, H. M. I.;
Brome, V. A.; Harwood, L. M.; Suthers, W. G. Carbohydr.
Res. 2001, 332, 157.
(6) (a) Garegg, P. J. Pure Appl. Chem. 1984, 56, 845. (b)Jiang,
L.; Chan, T.-H. J. Org. Chem. 1998, 63, 6035.
(7) Wang, C.-C.; Lee, J.-C.; Luo, S.-Y.; Fan, H.-F.; Pai, C.-L.;
Yang, W.-C.; Lu, L.-D.; Hung, S.-C. Angew. Chem. Int. Ed.
2002, 41, 2360.
SPh
H3C
BnO
O
O
O
O
Ph
BnO
O
OBn
BzO
21
OMe
24
6a
a
H3C
BnO
O
71%
α/β = 11/1
BnO
OBn
Scheme 7 Reagents and conditions: (a) PhSCl, AgOTf, DTBMP,
molecular sieves (AW300), CH2Cl2, –78 °C; (b) LiOH, H2O, THF,
r.t.
SPh
(8) Gridley, J. J.; Hacking, A. J.; Osborn, H. M. I.; Spackman,
D. G. Tetrahedron 1998, 54, 14925.
(9) Wang, H.; She, J.; Zhang, L.-H.; Ye, X.-S. J. Org. Chem.
2004, 69, 5774.
(10) Haines, A. H. Adv. Carbohydr. Chem. Biochem. 1976, 33,
11.
(11) Bourne, E. J.; Huggard, A. J.; Tatlow, J. C. J. Chem. Soc.
1953, 735.
O
H3C
BnO
O
BnO
21
O
Ph
OBn
O
O
5a
BzO
a
OMe
H3C
BnO
O
93%
BnO
OBn
25
α only
(12) Chittenden, G. J. F.; Buchanan, J. G. Carbohydr. Res. 1969,
11, 379.
O
SPh
OBn
H3C
BnO
O
O
Ph
O
OBn
15
BzO
(13) Qiu, D.; Schmidt, R. R. Liebigs Ann. Chem. 1992, 217.
(14) (a) Li, J.; Wang, J.; Czyryca, P. G.; Chang, H.; Osak, T. W.;
Evanson, R.; Chang, C.-W. T. Org. Lett. 2004, 6, 1381.
(b) Wang, J.; Li, J.; Chang, C.-W. T. unpublished results
(15) Acyl Migration Using Ag2O; General Procedure. A
solution of starting material (0.12 mmol) and TBAI (4.2 mg,
0.012 mmol), Ag2O (0.12 mmol) in anhyd DMF (5 mL) was
stirred at the indicated temperature. The reaction was
monitored by TLC. When the side product appeared, the
reaction mixture was subsequently filtered then
concentrated. The filtrate was subject to flash column
chromatography to yield the desired product. The unreacted
starting material was recovered.
O
OMe
OBn
6a
a
91%
O
H3C
OBn
BnO
26
α/β = 15/1
BnO
BnO
OBn
O
O
O
O
SPh
Ph
O
BzO
OBn
18
OMe
6a
OBn
a
O
91%
BnO
OBn
(16) Acyl Migration Using CsO2CCF3; General Procedure. A
mixture of starting material (0.20 mmol), CsO2CCF3 (0.20
mmol), and TBAI (8 mg, 0.02 mmol) in anhyd DMF (10
mL) was stirred at the indicated temperature. The reaction
was monitored by TLC. When the side product appeared, the
reaction mixture was filtered then concentrated. The filtrate
was subject to flash column chromatography to yield the
desired product. The unreacted starting material was
recovered.
BnO
α/β = 10/1
27
Scheme 8 Reagents and conditions: (a) PhSCl, AgOTf, DTBMP,
molecular sieves (AW300), CH2Cl2, –78 °C.
3,1-acyl migration of sphingosine. The mechanism for the
acyl migration has been elaborated, which may clarify the
role of TBAI and the effect of DMF. Furthermore, the
extension of acyl migration methodology to other poly-
hydroxyl substrates has also been undertaken.
Synlett 2006, No. 5, 756–760 © Thieme Stuttgart · New York