LETTER
Synthesis of N1-Cinnamyl Azetidin-2-ones
981
Table 2 Synthesis of N-Cinnamyl Azetidin-2-ones (4a–g)
Entry
Compound
R1
R2
Yield (%)a,b
Mp (°C)
1
2
3
4
5
4a
4b
4c
4d
4e
Ph
OCH2Ph
OPh
74
84
84
72
76
140–141
160–161
90–92
Ph
Ph
OMe
2-BrPh
OCH2Ph
OCH2Ph
120–122
142–143c
6
4f
4-MeOPh
4-MeOPh
OMe
61
78
122–123
120–121
7
4g
OCH2Ph
a Isolated yields.
b All the compounds gave satisfactory elemental analyses and spectral data.
c Mp of one of the diastereomers isolated from (1:1) diastereomeric mixture.
(4) Gumaste, V. K.; Bhawal, B. M.; Deshmukh, A. R. A. S.
Tetrahedron Lett. 2002, 43, 1345.
The iminophosphorane 2, obtained from cinnamyl azide
and triphenylphosphine, was treated with aldehyde to get
aza-Wittig product 3, which was found to be unstable and
used as such without purification. The cycloaddition reac-
tion of imine 3 with ketene, generated from acid chloride
and triethylamine, gave cis-N-cinnamyl-b-lactams (4a–g)
in good yields (Table 2).16 The chiral iodoaldehyde de-
rived from D-glucose17 was also used for the preparation
of N-cinnamyl imine 3e, which on further reaction with
ketene gave 1:1 diastereomeric mixture of cis-b-lactams
4e in very good yield (Table 2, entry 5). Both the diaste-
reomers could be separated by careful column chromatog-
raphy. Further work on the application of other allyl
azides for the synthesis of N-allyl azetidin-2-ones is in
progress.
(5) (a) Patai, S. The Chemistry of Azido Group; Interscience:
New York, 1971, 83–85. (b) Molina, P.; Alajarin, M.;
Lopez-Leonardo, C. Tetrahedron Lett. 1991, 32, 4041.
(6) Cheikh, R. B.; Chaabouni, R.; Laurent, A.; Mison, P.; Nafti,
A. Synthesis 1983, 685.
(7) (a) Crandall, J. K.; Michaely, W. J. J. Org. Chem. 1984, 49,
4244. (b) Kanai, T.; Kanagawa, Y.; Ishii, Y. J. Org. Chem.
1990, 55, 3274. (c) Sampath Kumar, H. M.; Subba Reddy,
B. V.; Anjaneyulu, S.; Yadav, J. S. Tetrahedron Lett. 1998,
39, 7385. (d) Malkov, A. V.; Spoor, P.; Vinader, V.;
Kocovsky, P. J. Org. Chem. 1999, 64, 5308. (e) Reddy, G.
V. S.; Venkatrao, G.; Subramanyam, R. V. K.; Iyengar, D. S.
Synth. Commun. 2000, 30, 2233. (f) Chandrasekhar, S.;
Raza, A.; Takhi, M. Tetrahedron: Asymmetry 2002, 13, 423.
(8) (a) Murahashi, S. I.; Taniguchi, Y.; Imada, Y.; Tanigawa, Y.
J. Org. Chem. 1989, 54, 3292. (b) Murahashi, S. I.;
Tanigawa, Y.; Imada, Y.; Taniguchi, Y. Tetrahedron Lett.
1986, 27, 227. (c) Safi, M.; Fahrang, R.; Sinou, D.
Tetrahedron Lett. 1990, 31, 527.
In summary, we have demonstrated a one-pot method for
the preparation of allyl azides from allyl alcohols using
triphosgene and sodium azide and shown the utility of cin-
namyl azide for the synthesis of N-cinnamyl-b-lactams.
(9) (a) Priebe, H. Acta Chem. Scand., Ser. B 1984, 38, 895.
(b) Kozaburo, N.; Hiroshi, K. Chem. Lett. 1982, 1477.
(10) (a) Arimoto, M.; Yamaguchi, H.; Fujita, E.; Nagao, Y.;
Ochiai, M. Chem. Pharm. Bull. 1989, 37, 3221.
Acknowledgment
(b) Arimoto, M.; Yamaguchi, H.; Fujita, E.; Ochiai, M.;
Nagao, Y. Tetrahedron Lett. 1987, 28, 6289.
Authors thank DST, New Delhi for financial support and AJ thanks
CSIR, New Delhi for research fellowship.
(11) Spectral data for cinnamyl azidoformate: colorless oil. IR
(CHCl3): 2175, 2135, 1730, 1500, 1448, 1236, 966 cm–1. 1H
NMR (300 MHz, CDCl3): d = 4.88 (d, J = 6.0 Hz, 2 H),
6.25–6.35 (m, 1 H), 6.73 (d, J = 16.0 Hz, 1 H), 7.20–7.45
(m, 5 H).
(12) Cinnamyl azide (1) and other allyl azides were found to be
stable at r.t. but for safety reason they were stored in the
refrigerator. [CAUTION: We did not observe any untoward
incidence while working with allyl azides. However, the use
of hood and safety shield is recommended, as azides are
known for their explosive property].
References
(1) (a) Cotarca, L.; Delogu, P.; Nardelli, A.; Sunjic, V. Synthesis
1996, 553. (b) Heintzelman, G. R.; Fang, W. K.; Keen, S. P.;
Wallace, G. A.; Weinreb, S. M. J. Am. Chem. Soc. 2001,
123, 8851. (c) White, J. D.; Hansen, J. D. J. Am. Chem. Soc.
2002, 124, 4950.
(2) (a) Krishnaswamy, D.; Bhawal, B. M.; Deshmukh, A. R. A.
S. Tetrahedron Lett. 2000, 41, 417. (b) Krishnaswamy, D.;
Govande, V. V.; Gumaste, V. K.; Bhawal, B. M.;
Deshmukh, A. R. A. S. Tetrahedron 2002, 58, 2215.
(3) Patil, R. T.; Ghazala, P.; Gumaste, V. K.; Bhawal, B. M.;
Deshmukh, A. R. A. S. Synlett 2002, 1455.
(13) Typical Experimental Procedure for the Preparation of
Cinnamyl Azide (1): To a stirred solution of triphosgene
(1.48 g, 5 mmol) in acetone (20 mL) was added a solution of
cinnamyl alcohol (1.34 g, 10 mmol) and Et3N (1.51 g, 15
Synlett 2004, No. 6, 979–982 © Thieme Stuttgart · New York