1304 J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 8
Greenidge et al.
(20) Vieth, M.; Hirst, J . D.; Brooks, C. L., III Do Active Site
Conformations of Small Ligands Correspond to Low Free Energy
Solution Structures ? J . Comput. -Aided Mol. Design 1998, 12,
563-572.
(21) Gund P. In: Progress in Molecular and Subcellular Biology,
Hahn F. E., Ed., Springer-Verlag: New York, 1977; Vol. 5, pp
117-143.
(22) Bostro¨m, J .; Norrby, P.-O.; Liljefors, T. Conformational Energy
Penalties of Protein-Bound Ligands. J . Comput.-Aided Mol. Des.
1998, 12, 383-396.
(23) (a) Wielert-Badt S.; Lin, J . T.; Lorenz, M.; Fritz, S.; Kinne, R.
K. Probing the Conformation of the Sugar Transport Inhibitor
Phlorizin by 2D-NMR, Molecular Dynamics Studies, and Phar-
macophore Analysis. J . Med. Chem. 2000, 43, 1692-1698. (b)
Koerber S. C.; Rizo, J .; Struthers R. S.; Rivier, J . E. Consensus
Bioactive Confromation of Cyclic GnRH Anatagonists Defined
by NMR and Molecular Modeling. J . Med. Chem. 2000, 43, 819-
828.
(24) Greenidge, P. A.; Weiser J . A Comparison of Methods for
Pharmacophore Generation With the Catalyst Software and
Their Use for 3D-QSAR: Application to a Set of 4-Aminopyridine
Thrombin Inhibitors. Mini-Rev. Med. Chem. 2001, 1, 79-
87.
(25) Shenkin, P. S.; McDonald, D. Q. Cluster Analysis of Molecular
Conformations, J . Comput. Chem. 1994, 15, 899-916. XCluster
1.7 is part of the MacroModel package, Schro¨dinger, Portland,
OR.
(26) Tucker, T. J .; Brady, S. F.; Lumma, W. C.; Lewis, S. D.; Gardell,
S. J .; Naylor-Olsen, A. L.; Yan, Y.; Sisko, J . T.; Stauffer, K. J .;
Lucaas, B. J .; Lynch, J . J .; Cook, J . J .; Stranieri, M. T.; Holahan,
M. A.; Lyle, E. A.; Baskin, E. P.; Chen, I. W.; Dancheck, K. B.;
Krueger, J . A.; Cooper, C. M.; 1 Vacca, J . Design and Synthesis
of a Series of Potent and Orally Bioavailable Noncovalent
Thrombin Inhibitors that Utilize Nonbasic Groups in the P1
position. J . Med. Chem. 1998, 41, 3210-3219.
Refer en ces
(1) Steinmetzer, T.; Hauptmann, J .; Sturzebecher, J . Advances In
the Development of Thrombin Inhibitors. Expert Opin. Invest.
Drugs 2001, 10, 845-864.
(2) Fenton, J . W., II; Ofosu, F. A.; Moon, D. G.; Maragonore, J . M.
Thrombin Structure and Function: Why Thrombin Is the
Primary Target for Antithrombotics. Blood Coagul. Fibrin. 1990,
2, 69-75.
(3) Hauel, N. H.; Nar, H.; Priepke, H.; Ries, U.; Stassen, J .-M.;
Wienen, W.; Structure-Based Design of Novel Potent Nonpeptide
Thrombin Inhibitors. J . Med. Chem. 2002, 45, 1757-1766.
(4) Gustafsson, D.; Nystrom, J .; Carlsson, S.; Bredberg, U.; Eriks-
son, U.; Gyzander, E.; Elg, M.; Antonsson, T.; Hoffmann, K.;
Ungell, A.; Sorensen, H.; Nagard, S.; Abrahamsson, A. The
Direct Thrombin Inhibitor Melagatran and Its Oral Prodrug H
375/95: Intenstinal Absorption Properties, Biochemical and
Pharmacodynamic Effects. Thromb. Res. 2001, 101, 171-
181.
(5) Li, C. Q.; Vindigni, A.; Sadler, J . E.; Wardell, M. R. Platelet
Glycoprotein Ib alpha Binds to Thrombin Anion-Binding Exosite
II Inducing Allosteric Changes in the Activity of Thrombin. J .
Biol. Chem. 2001, 276, 6161-6168.
(6) De Candia, E.; Hall, S. W.; Rutella, S.; Landolfi, R.; Andrews,
R. K.; Cristofaro, R. Binding of Thrombin to Glycoprotein 1b
Accelerates the Hydrolysis of PAR-1n on Intact Platelets. J . Biol.
Chem. 2001, 276, 4692-4698.
(7) Davie, E. W.; Fujikawa, K.; Kisiel, W. The Coagulation cas-
cade: Initiation, Maintenance and Regulation. Biochemistry
1991, 30, 10363-10369.
(8) Guinto, E. R.; Vindigni, A.; Ayala, Y. M.; Dang, Q. D.; Di Cera,
E. Identification of Residues Linked to The Slow to Fast
Transistion of Thrombin. Proc. Natl. Acad. Sci. U.S.A. 1995, 92,
11185-11189.
(9) Goodwin, C. A.; Deadman, J . J .; Le Bonniec, B. F.; Elgendy, S.;
Kakkar, V. V.; Scully, M. F. Heparin Enhances the Catalytic
Activity of des-ETW-Thrombin, Biochem. J . 1996, 315, 77-
83.
(27) von der Saal, W.; Kucznierz, R.; Leinert, H.; Engh, R. Derivatives
of 4-Amino-Pyridine As Selective Thrombin Inhibitors. Bioorg.
Med. Chem. Lett. 1997, 7, 1283-1288.
(28) Deadman, J . J .; Elgendy, S.; Goodwin, C. A.; Green, D.; Baban,
J . A.; Patel, G.; Skordalakes, E.; Chino, N.; Claeson, G.; Kakkar,
V. V.; Scully, M. F. Characterization of a Class of Peptide
Boronates With Neutral P1 Side Chains As Highly Selective
Inhibitors of Thrombin. J . Med. Chem. 1995, 38, 1511-
1522.
(29) Insight II User Guide, September 1997. San Diego: MSI,
1997.
(30) Pauling L. The Nature of the Chemical Bond; Cornell University
Press: New York, 1960.
(10) Sanschagrin, P. C.; Kuhn, L. A. Cluster analysis of consensus
water sites in thrombin and trypsin shows conservation between
serine proteases and contribution to ligand specificity. Protein
Sci. 1998, 7, 2054-2064.
(11) Matter, H.; Defossa, E.; Heinelt, U.; Blohm, P.-M.; Schneider,
D.; Mu¨ller, A.; Herok, S.; Schreuder, H.; Liesum, A.; Brachvogel,
V.; Lo¨nze, P.; Walser, A.; Al-Obeidi, F.; Wildgoose, P. Design and
Quantitative Structure-Activity Relationship of 3-Amidinoben-
zyl-1H-indole-2-carboxamides as Potent Nonchiral, and Selective
Inhibitors of Blood Coagulation Factor Xa. J . Med. Chem. 2002,
45, 2749-2769.
(31) Halgren, T. A. MMFF VI. MMFF94s Option for Energy Mini-
mization Studies. J . Comput Chem. 1999, 20, 720-729.
(32) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T.
Semianalytical Treatment of Solvation for Molecular Mechanics
and Dynamics. J . Am. Chem. Soc. 1990, 112, 6127-6129.
(33) (a) Weiser, J .; Shenkin, P. S.; Still, W. C. Approximate Atomic
Surfaces from Linear Combinations of Pairwise Overlaps (LCPO).
J . Comput. Chem. 1999, 20, 217-230. (b) Weiser, J .; Weiser, A.
A.; Shenkin, P. S.; Still, W. C. Neighbor-List Reduction: Opti-
mization for Computation of Molecular van der Waals and
Solvent-Accessible Surface Areas. J . Comput. Chem. 1998, 19,
797-808. (c) Weiser, J .; Shenkin, P. S.; Still, W. C. Fast,
Approximate Algorithm for Detection of Solvent-Inaccessible
Atoms. J . Comput. Chem. 1999, 20, 586-596.
(34) Ponder, J . W.; Richards, F. M. An Efficient Newton-like Method
for Molecular Mechanics Energy Minimization of Large Mol-
ecules. J . Comput. Chem. 1987, 8, 1016-1024.
(35) Chang, G.; Guida, W. C.; Still, W. C. An Internal Coordinate
Monte Carlo Method for Searching Conformational Space. J . Am.
Chem. Soc. 1989, 111, 4379-4386.
(36) Kolossvary, I.; Guida, W. C. Low Mode Search. An Efficient,
Automated Computational Method for Conformational Analy-
sis: Application to Cyclic and Acyclic Alkanes and Cyclic
Peptides. J . Am. Chem. Soc. 1996, 118, 5011-5019.
(37) (a) Smellie, A.; Kahn, S. D.; Teig, S. L. Analysis of Conforma-
tional Coverage 1. Validation and Estimation of Coverage. J .
Chem. Inf. Comput. Sci. 1995, 35, 285-294. (b) Smellie, A.; Teig,
S. L.; Towbin, P. Poling: Promoting Conformational Variation.
J . Comput. Chem. 1995, 16, 171-187.
(38) Murray, C. W.; Baxter, C. A.; Frenkel, A. D.; The Sensitivity of
the Results of Molecular Docking to Induced Fit Effects: Ap-
plication to Thrombin, Thermolysin and Neuraminidase. J .
Comput.-Aided Mol. Des. 1999, 13, 547-562.
(12) J ones-Hertzog, D. K.; J orgensen, W. L. Binding Affinities for
Sulfonamide Inhibitors with Human Thrombin Using Monte
Carlo Simulations with a Linear Response Methodol. J . Med.
Chem. 1997, 40, 1539-1549.
(13) Bursi, R.; Grootenhuis, P. D. Comparative Molecular Field
Analysis and Energy Interaction Studies of Thrombin-Inhibitor
Complexes. J . Comput. -Aided Mol. Design 1999, 13, 221-
232.
(14) Cramer, R. D., III; Patterson, D. E.; Bunce, J . D. Comparative
Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding
of Steroids to Carrier Proteins. J . Am. Chem. Soc. 1988, 110,
5959-5967.
(15) (a) Greenidge, P. A.; Carlsson, B.; Bladh, L.-G.; Gillner, M.
Pharmacophores Incorporating Numerous Excluded Volumes
Defined by X-ray Crystallographic Structure in Three-Dimen-
sional Database Searching: Application to the Thyroid Hormone
Receptor. J . Med. Chem. 1998, 41, 2503-2512; (b) Gillner, M.;
Greenidge, P. A. In Pharmacophore Perception, Development and
Use in Drug Design; International University Line: La J olla,
1999; pp 373-384.
(16) Catalyst 4.0 Tutorials, August 1998, San Diego: Molecular
Simulations Inc.
(17) Mohamadi, F.; Richards, N. G. J .; Guida, W. C.; Liskamp, R.;
Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W.
C. MacroModel-An Integrated Software System for Modeling
Organic and Bioorganic Molecules Using Molecular Mechanics.
J . Comput. Chem. 1990, 11, 440-467. MacroModel 7.2, Schro¨-
dinger, Portland, OR.
(18) Engh, R. A.; Brandstetter, H.; Sucher, G.; Eichinger, A.; Bau-
mann, U.; Bode, W.; Huber, R.; Poll, T.; Rudolph, R.; von der
Saal, W. Enzyme Flexibility, Solvent and “Weak” Interactions
Characterize Thrombin-Ligand Interactions: Implications For
Drug Design. Structure 1996, 4, 1353-1362.
(39) Coombs, G. S.; Rao, M. S.; Olson, A. J .; Dawson, P. E.; Madison,
E. L. Revisiting Catalysis by Chymotrypsin Family Serine
Proteases Using Peptide Substrates and Inhibitors With Un-
natural Main Chains. J . Biol. Chem. 1999, 274, 24074-
24079.
(19) Schwarzl, S. J .; Tschopp, B. T.; Smith, J . C.; Fischer, S. Can
the Calculation of Ligand Binding Free Energies Be Improved
with Continuum Solvent Electrostatics and an Ideal-Gas En-
tropy Correction? J . Comput. Chem. 2002, 23, 1145-
1149.