Y. Jiang et al. / Journal of Organometallic Chemistry 759 (2014) 37e45
43
ether to give pale yellow solids. Recrystallization from CH2Cl2/
hexane generated pale yellow crystals of [Pd(C,N-
2-C6H4CH]
NC6H3-2,6-i-Pr2)]2( -dppb) (3, 0.106 g, 75%). IR (KBr,
h1 1-C2O4)(
k
m-
-h
m
cmꢀ1): 1612 (C]N; C]O); m.p.: 228e230 ꢂC; dH (300 MHz; CDCl3;
Me4Si): 7.94 (2H,d, J ¼ 7.2 Hz, eCH]N), 7.78e7.84 (8H, m, ePPh2e),
7.27e7.43 (16H, m, ePPh2e, Ar), 7.15 (4H, d, J ¼ 7.5 Hz, Ar), 6.88e
6.93 (2H, m, Ar), 6.61e6.68 (4H, m, Ar), 3.55 (4H, hepta, e
CH(CH3)2), 2.14 (4H, br, PeCH2eCH2eCH2eCH2eP), 1.31 (12H, d,
J ¼ 6.3 Hz, eCH(CH3)2), 1.12 (12H, d, J ¼ 6.6 Hz, eCH(CH3)2), 1.00
(4H, br, PeCH2eCH2eCH2eCH2eP); dP (CDCl3): 33.4 (s); Anal. Calcd
for C68H72N2O4P2Pd2$0.25CH2Cl2: C, 64.18; H, 5.72; N, 2.19. Found:
C, 64.29; H, 5.82; N, 1.88.
Complexes 4e7 were prepared in a similar manner as complex 3.
[Pd{C,N-
dppb) (4, 43%)
k m- -h m-
2-(4-MeO)C6H3CH]NC6H3-2,6-i-Pr2]2( h1 1-C2O4)(
IR (KBr, cmꢀ1): 1608 (C]N; C]O); m.p.: 203e205 ꢂC; dH
(300 MHz; CDCl3; Me4Si): 7.80e7.86 (10H, m, eCH]N, ePPh2e),
7.27e7.44 (14H, m, ePPh2e, Ar), 7.18 (2H, d, J ¼ 8.4 Hz, Ar), 7.13 (4H, d,
J ¼ 7.5 Hz, Ar), 6.40 (2H, dd, J ¼ 2.4, 2.4 Hz, Ar), 6.13 (2H, dd, J ¼ 2.1,
2.1 Hz, Ar), 3.54 (4H, hepta, eCH(CH3)2), 3.14 (6H, s, eOCH3), 2.14 (4H,
br, PeCH2eCH2eCH2eCH2eP), 1.27 (12H, d, J ¼ 6.9 Hz, eCH(CH3)2),
1.09 (16H, d, J ¼ 6.9 Hz, eCH(CH3)2, PeCH2eCH2eCH2eCH2eP); dP
(CDCl3): 33.3 (s); Anal. Calcd for C70H76N2O6P2Pd2$0.25CH2Cl2: C,
63.09; H, 5.77; N, 2.09. Found: C, 62.89; H, 6.00; N, 2.46.
Fig. 7. Macrocycle views of 5 (a) and 6 (b). 2,6-Diisopropyl phenyl, phenyl of dppb and
dppp, and hydrogen atoms were omitted for clarity. Palladium, nitrogen, oxygen,
phosphorus and carbon are represented by purple, blue, red, orange and black spheres,
respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
[Pd(C,N-
76%)
k m- -h m-dppp) (5,
2-C6H4CH]NC6H3-2,6-i-Pr2)]2( h1 1-C2O4)(
IR (KBr, cmꢀ1): 1613 (C]N; C]O); m.p.: 206e208 ꢂC; dH
(300 MHz; CDCl3; Me4Si): 8.00 (2H, d, J ¼ 7.2 Hz, eCH]N), 7.69e
7.75 (8H, m, ePPh2e), 7.35e7.47 (12H, m, ePPh2e), 7.27e7.32 (4H,
m, Ar), 7.21 (4H, d, J ¼ 7.5 Hz, Ar), 6.91e6.96 (2H, m, Ar), 6.70e6.78
(4H, m, Ar), 3.65 (4H, hepta, eCH(CH3)2), 2.02 (4H, br, PeCH2eCH2e
CH2eCH2eCH2eP), 1.60 (4H, br, PeCH2eCH2eCH2eCH2eCH2eP),
1.32 (12H, d, J ¼ 6.9 Hz, eCH(CH3)2), 1.26 (4H, br, PeCH2eCH2e
CH2eCH2eCH2eP),1.13 (12H, d, J ¼ 6.9 Hz, eCH(CH3)2), 0.98 (4H, br,
C42H48N2O6Pd2$0.25CH2Cl2: C, 55.71; H, 5.37; N, 3.08. Found: C,
55.40; H, 5.35; N, 2.72.
[Pd(C,N-k m- -h m-dppb) (3)
2-C6H4CH]NC6H3-2,6-i-Pr2)]2( h1 1-C2O4)(
To a 6 mL CH2Cl2 solution of complex 1 (0.094 g, 0.113 mmol)
was added 1,4-(diphenylphosphino)butane (0.049 g, 0.115 mmol).
After stirring for 14 h at room temperature, the solvent was
completely evaporated and the resulting residue was isolated by
ꢂ
ꢀ
Fig. 8. . Molecular structure of 7. Selected bond lengths (A) and angles ( ): Pd1eC8 1.995(6), Pd1eN2, 2.098(4), Pd1eO4, 2.135(4), Pd1eP1 2.2569(15), Pd2eC3 1.986(5), Pd2eO1
2.128(4), Pd2eO2 2.075(4), Pd2eP2 2.2244(17), C8ePd1eN2 81.4(2), C8ePd1eO4 168.73(19), C8ePd1eP1 95.18(16), N2ePd1eO4 87.63(16), C4eO4ePd1 127.3(4), C3ePd2eO2
91.15(19), C3ePd2eO1 169.32(19), O1ePd2eO2 79.49(15), O1ePd2eP2 99.38(11), C4eO1ePd2 111.9(3).