The Journal of Organic Chemistry
Article
4 in 98% yield as determined by 19F NMR spectroscopic analysis of
the crude reaction mixture. The 19F NMR spectral data matched that
of an authentic sample (Ark Pharm; m, −108.02 ppm). The identity of
the product was further confirmed by GCMS analysis (m/z = 121).
The yield reported in Chart 1 (94%) represents an average of three
runs (98%, 83%, and 100%).
reaction). In Industrial Chemistry Library; Jean-Roger, D., Serge, R.,
Eds.; Elsevier: New York, 1996; pp 244−292. (c) Champagne, P. A.;
Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Chem. Rev.
2015, 115, 9073. (d) Clark, J. H.; Wails, D.; Bastock, T. W. Aromatic
Fluorination; CRC Press: Boca Raton, FL, 1996.
(4) For fluorodenitration reactions, see the following: Kuduk, S. D.;
3-Fluorobenzonitrile (28). General procedure E was followed using
3-chlorobenzonitrile (13.7 mg, 0.1 mmol, 1 equiv) at 80 °C, providing
28 in 6% yield as determined by 19F NMR spectroscopic analysis of
the crude reaction mixture. The 19F NMR spectral data matched that
of an authentic sample (Oakwood Chemicals; m, −111.18 ppm). The
identity of the product was further confirmed by GCMS analysis (m/z
= 121). The yield reported in Chart 1 (7%) represents an average of
two runs (6% and 7%).
DiPardo, R. M.; Bock, M. G. Org. Lett. 2005, 7, 577.
(5) (a) Sun, H.; DiMagno, S. G. Angew. Chem., Int. Ed. 2006, 45,
2720. (b) Sun, H.; DiMagno, S. G. J. Am. Chem. Soc. 2005, 127, 2050.
(c) DiMagno, S. G.; Sun, H. Anhydrous Fluoride Salts and Reagents
and Methods for Their Production. Patent US20060089514A1, April
27, 2006.
(6) Allen, L. J.; Muhuhi, J. M.; Bland, D. C.; Merzel, R.; Sanford, M.
S. J. Org. Chem. 2014, 79, 5827.
4-Fluorobenzonitrile (29). General procedure E was followed using
4-chlorobenzonitrile (13.7 mg, 0.1 mmol, 1 equiv) at 80 °C, providing
29 in 79% yield as determined by 19F NMR spectroscopic analysis of
the crude reaction mixture. The 19F NMR spectral data matched that
of an authentic sample (Oakwood Chemicals; m, −103.89 ppm). The
identity of the product was further confirmed by GCMS analysis (m/z
= 121). The yield reported in Chart 1 (80%) represents an average of
two runs (79% and 81%).
Ethyl 4-Fluorobenzoate (30). General procedure D was followed
using ethyl 4-nitrobenzoate (98 mg, 0.5 mmol, 1 equiv), providing 30
as a colorless oil (51 mg, 61% yield, Rf = 0.58 in 90% hexanes/10%
EtOAc). 1H, 13C, and 19F NMR experimental data match those
reported in the literature.7 HRMS ESI+ (m/z): [M]+ calcd for
C9H9FO2 168.0587, found 168.0584. The yield reported in Chart 1
(63%) represents an average of two runs (61% and 65%).
(7) Ryan, S. J.; Schimler, S. D.; Bland, D. C.; Sanford, M. S. Org. Lett.
2015, 17, 1866.
(8) The deoxyfluorination reagent Phenofluor converts phenols to
(hetero)aryl fluorides via a proposed SNAr pathway. These reactions
generally proceed at temperatures (≥80 °C) and require the addition
of an excess of CsF: (a) Tang, P.; Wang, W.; Ritter, T. J. Am. Chem.
Soc. 2011, 133, 11482. (b) Fujimoto, T.; Becker, F.; Ritter, T. Org.
Process Res. Dev. 2014, 18, 1041. (c) Fujimoto, T.; Ritter, T. Org. Lett.
2015, 17, 544.
(9) NMe4F can be synthesized from NMe4Cl and KF or NMe4OH
and HF: (a) Dermeik, S.; Sasson, Y. J. Org. Chem. 1989, 54, 4827.
(b) Tunder, R.; Siegel, B. J. Inorg. Nucl. Chem. 1963, 25, 1097.
(c) Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. J.
Am. Chem. Soc. 1990, 112, 7619. (d) Christe, K. O.; Wilson, W. W.
Anhydrous, chlorine- and bifluoride-free tetramethylammonium
fluoride. Patent EP0457966A1, November 27, 1991. (e) Urban, G.;
4-Fluorobenzophenone (31). General procedure D was followed
using 4-nitrobenzophenone (114 mg, 0.5 mmol, 1 equiv), providing 31
as a white solid (89 mg, 89% yield, Rf = 0.54 in 90% hexanes/10%
Dotzer, R. Method of producing onium fluorides selected from the
̈
group consisting of nitrogen, antimony, boron, and arsenic. Patent
US3388131A1, June 11, 1968.
1
EtOAc, mp = 47−48 °C). H, 13C, and 19F NMR experimental data
match those reported in the literature.7 HRMS ESI+ (m/z): [M + H]+
calcd for C13H10FO 201.0710, found 201.0708. The yield reported in
Chart 1 (90%) represents an average of two runs (89% and 90%).
(10) Sharma, R. K.; Fry, J. L. J. Org. Chem. 1983, 48, 2112.
(11) Grushin, V. V.; Marshall, W. J. Organometallics 2008, 27, 4825.
(12) (a) Boechat, N.; Clark, J. H. J. Chem. Soc., Chem. Commun. 1993,
921. (b) Adams, D. J.; Clark, J. H.; McFarland, H. J. Fluorine Chem.
1998, 92, 127. (c) Clark, J. H.; Wails, D. J. Fluorine Chem. 1995, 70,
201. (d) Clark, J. H.; Wails, D. Tetrahedron Lett. 1993, 34, 3901.
(e) Clark, J. H.; Wails, D.; Jones, C. W.; Smith, H.; Boechat, N.;
Mayer, L. U.; Mendonca, J. S. J. Chem. Res. 1994, 478.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(13) (a) Adams, D. J.; Clark, J. H.; Nightingale, D. J. Tetrahedron
1999, 55, 7725. (b) Adams, D. J.; Clark, J. H.; McFarland, H.;
Nightingale, D. J. J. Fluorine Chem. 1999, 94, 51. (c) Maggini, M.;
Passudetti, M.; Gonzales-Trueba, G.; Prato, M.; Quintily, U.; Scorrano,
G. J. Org. Chem. 1991, 56, 6406.
(14) (a) Filatov, A. A.; Boiko, V. N.; Yagupolskii, Y. L. J. Fluorine
Chem. 2012, 143, 123. (b) Smyth, T.; Carey, A. Tetrahedron 1995, 51,
8901.
Further description of the cost analysis and NMR spectra
of isolated products 2, 7−16, 30, and 31 (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
(15) (a) Eckelbarger, J. D.; Epp, J. B.; Schmitzer, P. R.; Siddall, T. L.
3-Alkenyl-6-halo-4-aminopicolinates and their use as herbicides. Patent
US20120190548A1, July 26, 2012. (b) Whiteker, G. T.; Arndt, K. E.;
Renga, J. M.; Yuanming, Z.; Lowe, C. T.; Siddall, T. L.; Podhorez, D.
E.; Roth, G. A.; West, S. P.; Arndt, C. Process for the preparation of 4-
amino-5-fluoro-3-halo-6-(substituted)picolinates. Patent
US20120190860, July 26, 2012. (c) Yerkes, C. N.; Lowe, C. T.;
Eckelbarger, J. D.; Epp, J. B.; Guenthenspberger, K. A.; Siddall, T. L.;
Schmitzer, P. R. Arylalkyl esters of 4-amino-6-(substitutedphenyl)-
picolinates and 6-amino-2-(substitutedphenyl)-4-pyrimidinecarboxy-
lates and their use as selective herbicides for crops. Patent
US20150025238A1, January 22, 2015. (d) Eckelbarger, J. D.; Epp, J.
B.; Schmitzer, P. R. 6-Amino-2-substituted-5-vinylsilylpyrimidine-4-
carboxylic acids and esters and 4-amino-6-substituted-3-vinylsilylpyr-
idine-2-carboxylic acids and esters as herbicides. Patent
US20120190549A1, July 26, 2012. (e) Epp, J. B.; Schmitzer, P. R.;
Balko, T. W.; Ruiz, J. M.; Yerkes, C. N.; Siddall, T. L.; Lo, W. C. 2-
Substituted-6-amino-5-alkyl, alkenyl or alkynyl-4-pyrimidinecarboxylic
acids and 6-substituted-4-amino-3-alkyl, alkenyl and alkynyl picolinic
acids and their use as herbicides. Patent US20090088322A1, April 2,
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by Dow Chemical.
■
REFERENCES
(1) (a) Wang, J.; San
■
́
chez-Rosello,
́
M.; Acena, J. L.; del Pozo, C.;
̃
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev.
2014, 114, 2432. (b) Jeschke, P. Pest Manage. Sci. 2010, 66, 10.
(c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc.
Rev. 2008, 37, 320. (d) Muller, K.; Faeh, C.; Diederich, F. Science
̈
2007, 317, 1881. (e) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
(2) (a) Special Issue: Fluorine in the Life Sciences ChemBioChem
2004, 5, 557−726.10.1002/cbic.v5:5 (b) Smart, B. E. J. Fluorine Chem.
2001, 109, 3.
(3) (a) Adams, D. J.; Clark, J. H. Chem. Soc. Rev. 1999, 28, 225.
(b) Langlois, B.; Gilbert, L.; Forat, G. Fluorination of aromatic
compounds by halogen exchange with fluoride anions (“halex”
H
J. Org. Chem. XXXX, XXX, XXX−XXX