Organic Letters
Letter
1501. (c) Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem.,
Int. Ed. 2008, 47, 8998. (d) Littich, R.; Scott, P. J. H. Angew. Chem., Int.
Ed. 2012, 51, 1106.
(17) (a) Basuli, F.; Wu, H.; Griffiths, G. L. J. Labelled Compd.
Radiopharm. 2011, 54, 224. (b) Vaidyanathan, G.; Zalutsky, M. R. Nucl.
Med. Biol. 1992, 19, 275. (c) Hoehne, A.; Behera, D.; Parsons, W. H.;
James, M. L.; Shen, B.; Borgohain, P.; Bodapati, D.; Prabhakar, A.;
Gambhir, S. S.; Yeomans, D. C.; Biswal, S.; Chin, F. T.; Bois, J. D. J. Am.
Chem. Soc. 2013, 135, 18102.
(18) (a) Lemaire, C.; Guillaume, M.; Christiaens, L.; Palmer, A. J.;
Cantineau, R. Appl. Radiat. Isot. 1987, 38, 1033. (b) Haka, M. S.;
Kilbourn, M. R.; Watkins, G. L.; Toorongian, S. A. J. Labelled Compd.
Radiopharm. 1989, 27, 823. (c) Poethko, T.; Schottelius, M.;
Thumshirn, G.; Hersel, U.; Herz, M.; Henriksen, G.; Kessler, H.;
Schwaiger, M.; Wester, H.-J. J. Nucl. Med. 2004, 45, 892.
(2) For a recent review on [18F]fluoroaryl synthesis, see: Tredwell, M.;
Gouverneur, V. Angew. Chem., Int. Ed. 2012, 51, 11426.
(3) (a) Garnett, E. S.; Firnau, G.; Chan, P. K. H.; Sood, S.; Belbeck, L.
W. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 464. (b) Garnett, E. S.; Firnau,
G.; Nahmias, C. Nature 1983, 305, 137. (c) Luxen, A.; Guillaume, M.;
Melega, W. P.; Pike, V. W.; Solin, O.; Wagner, R. Int. J. Nucl. Med. Biol.
1992, 19, 149. (d) Rakshi, J. S.; Uema, T.; Ito, K.; Bailey, D. L.; Morrish,
P. K.; Ashburner, J.; Dagher, A.; Jenkins, I. H.; Friston, K. J.; Brooks, D. J.
Brain 1999, 122, 1637.
(4) For the application of 6-[18F]F -DOPA to tumor imaging, see:
(a) Hoegerle, S.; Altehoefer, C.; Ghanem, N.; Koehler, G.; Waller, C. F.;
Scheruebl, H.; Moser, E.; Nitzsche, E. Radiology 2001, 220, 373.
(19) (a) Goulding, R. W.; Palmer, A. J.; Thakur, M. L. Radioisotopy
1971, 12, 1045. (b) Cottrall, M. F.; Taylor, D. M.; McElwain, T. J. Br. J.
Radiol. 1973, 46, 277. (c) Bodsch, W.; Coenen, H. H.; Stocklin, G.;
̈
Takahashi, K.; Hossmann, K. A. J. Neurochem. 1988, 50, 979.
́
(b) Becherer, A.; Szabo, M.; Karanikas, G.; Wunderbaldinger, P.;
(20) Since then, O-(2-[18F]fluoroethyl)-L-tyrosine has been utilized as
a less than ideal but accessible surrogate for phenylalanine. See:
(a) Wester, H. J.; Herz, M.; Weber, W.; Heiss, P.; Senekowitsch-
Angelberger, P.; Raderer, M.; Kurtaran, A.; Dudczak, R.; Kletter, K. J.
Nucl. Med. 2004, 45, 1161. (c) Chen, W.; Silverman, D. H. S.; Delaloye,
S.; Czernin, J.; Kamdar, N.; Pope, W.; Satyamurthy, N.; Schiepers, C.;
Cloughesy, T. J. Nucl. Med. 2006, 47, 904.
Schmidtke, R.; Schwaiger, M.; Stocklin, G. J. Nucl. Med. 1999, 40, 205.
̈
(b) Langen, K.-J.; Hamacher, K.; Weckesser, M.; Floeth, F.; Stoffels, G.;
Bauer, D.; Coenen, H. H.; Pauleit, D. Nucl. Med. Biol. 2006, 33, 287.
(21) For 6-[18F]F-DOPA syntheses using [18F]F2 or a derivative
thereof, see: (a) Firnau, G.; Chirakal, R.; Garnett, E. S. J. Nucl. Med.
1984, 25, 1228. (b) Chirakal, R.; Firnau, G.; Couse, J.; Garnett, E. S.
Appl. Radiat. Isot. 1984, 35, 651. (c) Coenen, H. H.; Franken, K.; Kling,
(5) (a) Grushin, V. V.; Kantor, M. M.; Tolstoya, T. P.; Shcherbina, T.
M. Russ. Chem. Bull. 1984, 33, 2130. (b) Shah, A.; Pike, V. W.;
Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 1998, 2043. (c) Chun, J.;
Telu, S.; Lu, S.; Pike, V. W. Org. Biomol. Chem. 2013, 11, 5094.
(d) Chun, J.; Pike, V. W. Org. Biomol. Chem. 2013, 11, 6300.
(e) Yusubov, M. S.; Svitich, D. Y.; Larkina, M. S.; Zhdankin, V. V.
ARKIVOC 2013, 364.
(6) (a) Martín-Santamaría, S.; Carroll, M. A.; Carroll, C. M.; Carter, C.
D.; Rzepa, H. S.; Widdowson, D. A.; Pike, V. W. Chem. Commun. 2000,
649. (b) Ross, T. L.; Ermert, J.; Hocke, C.; Coenen, H. H. J. Am. Chem.
Soc. 2007, 129, 8018. (c) Carroll, M. A.; Jones, C.; Tang, S.-L. J. Labelled
Compd. Radiopharm. 2007, 50, 450. (d) Jang, K. S.; Jung, Y.-W.; Gu, G.;
Koeppe, R. A.; Sherman, P. S.; Quesada, C. A.; Raffel, D. M. J. Med.
Chem. 2013, 56, 7312.
P.; Stocklin, G. Appl. Radiat. Isot. 1988, 39, 1243. (d) Namavari, M.;
̈
Bishop, A.; Satyamurthy, N.; Bida, G.; Barrio, J. R. Appl. Radiat. Isot.
1992, 43, 989. (e) Stenhagen, I. S. R.; Kirjavainen, A. K.; Forsback, S. J.;
Jørgensen, C. G.; Robins, E. G.; Luthra, S. K.; Solin, O.; Gouverneur, V.
Chem. Commun. 2013, 49, 1386.
(22) For syntheses of 6-[18F]F-DOPA from 18F−, see: (a) Ding, Y. S.;
Shiue, C. Y.; Fowler, J. S.; Wolf, A. P.; Plenevaux, A. J. Fluorine Chem.
1990, 48, 189. (b) Lemaire, C.; Damhaut, P.; Plenevaux, A.; Comar, D. J.
Nucl. Med. 1994, 35, 1996. (c) Lemaire, C.; Gillet, S.; Guillouet, S.;
Plenevaux, A.; Aerts, J.; Luxen, A. Eur. J. Org. Chem. 2004, 2899.
(d) Wagner, F. M.; Ermert, J.; Coenen, H. H. J. Nucl. Med. 2009, 50,
1724.
(7) In our hands, (2-thienyl)(aryl)iodonium derivatives exhibit modest
stability; for example, [(4-OMePh)(2-thienyl)I]Br was found to
decompose within 2 weeks under ambient conditions.
(8) Only one report in the patent literature has described accessing F-
DOPA from diaryliodonium salts: DiMagno, S. Fluorination of
Aromatic Ring Systems. WO2010/048170A2, April 29, 2010.
(9) For transition metal-catalyzed aryl radiofluorination, see: (a) Lee,
E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian, G. B.;
Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. Science 2011, 334, 639.
(b) Kamlet, A. S.; Neumann, C. N.; Lee, E.; Carlin, S. M.; Moseley, C.
K.; Stephenson, N.; Hooker, J. M.; Ritter, T. PLoS One 2013, 8, e59187.
(c) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 17456.
(10) For metal catalyzed sp3 radiofluorination, see: (a) Topczewski, J.
J.; Tewson, T. J.; Nguyen, H. M. J. Am. Chem. Soc. 2011, 133, 19318.
(b) Benedetto, E.; Tredwell, M.; Hollingworth, C.; Khotavivattana, T.;
Brown, J. M.; Gouverneur, V. Chem. Sci. 2013, 4, 89. (c) Graham, T. J.
A.; Lambert, R. F.; Ploessl, K.; Kung, H. F.; Doyle, A. G. J. Am. Chem. Soc.
2014, 136, 5291. (d) Huang, X.; Liu, W.; Ren, H.; Neelamegam, R.;
Hooker, J. M.; Groves, J. T. J. Am. Chem. Soc. 2014, 136, 6842.
(11) Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. Org. Lett.
2013, 15, 5134.
(23) An unoptimized and uncorrected isolated RCY of 1.1% of 15
(16.5 mCi) was obtained via automated synthesis using 14-BF4 as
starting material. This material had a specific activity of 290 Ci/mmol.
(24) Salts 12 and 14 were prepared from L-PHE and L-DOPA
respectively. Optimization of the radiosynthesis is ongoing and to date
ee’s have not yet been determined.
(12) To achieve an acceptable yield, bis(p-methoxyphenyl)iodonium
salts are required, which produces iodoanisole as a byproduct: Pike, V.
W.; Aigbirhio, F. I. J. Chem. Soc., Chem. Commun. 1995, 2215.
(13) Jauregui-Osoro, M.; Sunassee, K.; Weeks, A. J.; Berry, D. J.; Paul,
R. L.; Cleij, M.; Banga, J. P.; O’Doherty, M. J.; Marsden, P. K.; Clarke, S.
E. M.; Ballinger, J. R.; Szanda, I.; Cheng, S.-Y.; Blower, P. J. Eur. J. Nucl.
Med. Mol. Imaging 2010, 37, 2108.
(14) Chun, J.-H.; Lu, S.; Pike, V. W. Eur. J. Org. Chem. 2011, 4439.
(15) If 18F/19F exchange were rapid, the expected specific activity of 4-
[18F]fluoroanisole would be <1 Ci/mmol.
(16) (a) Gail, R.; Coenen, H. H. Appl. Radiat. Isot. 1994, 45, 105.
(b) Steiniger, B.; Wuest, F. R. J. Labelled Compd. Radiopharm. 2006, 49,
817. (c) Gao, Z.; Gouverneur, V.; Davis, B. G. J. Am. Chem. Soc. 2013,
135, 13612.
3227
dx.doi.org/10.1021/ol501243g | Org. Lett. 2014, 16, 3224−3227