G Model
CCLET 3023 1–3
S.-P. Wang et al. / Chinese Chemical Letters xxx (2014) xxx–xxx
3
C–CH2–C), 4.11–3.98 (m, 2H, C–CH2–C), 5.10 (s, 2H, Ar–CH2–O), 5.75 (s, 1H, Ar– 142
CH–O), 5.90 (s, 1H, Ar–CH–Ar), 5.92 (s, 2H, O–CH2–O), 6.47 (s, 1H, Ar–H), 6.70 (s, 143
82
83
84
85
86
87
88
the first time, and their structures were characterized by NMR
spectroscopy and HR-ESI-MS. The cytotoxicity of compounds
10–15 was evaluated in seven cell lines by the MTT method and
the results showed that five of them exhibited good antitumor
activity against these cell lines. Moreover, the cytotoxicity of
compound 15 against HELA and KB was improved to nanomolar
level. This result is helpful in discovering new antitumor agents.
1H, Ar–H), 6.92 (s, 1H, Ar–H), 6.97 (s, 1H, Ar–H), 7.48–7.21 (m, 5H, Ar–Hꢂ5). 13
C
144
NMR (125 MHz, DMSO-d6): d 149.7, 148.8, 147.9, 142.1, 140.5, 137.4, 137.1, 145
134.2, 128.8, 128.4, 128.2, 126.7, 111.0, 109.9, 108.3, 101.5, 101.2, 100.5, 71.0, 146
69.3, 65.1, 56.1, 56.0. HRESIMS Calcd. for C26H26NaO8 [M+Na]+: 489.1520, found: 147
489.1512. Compound 10: White solid, mp 162–164 8C. 1H NMR (400 MHz, DMSO- 148
d6): d 0.94 (t, 3H, J = 7.1 Hz, –CH3), 1.25 (t, 3H, J = 7.1 Hz, –CH3), 3.60 (s, 3H, – 149
OCH3), 3.93 (s, 3H, –OCH3), 3.95 (q, 2H, J = 7.1 Hz, C–CH2–C), 4.33 (q, 3H, 150
J = 7.1 Hz, C–CH2–C), 5.14 (s, 2H, Ar–CH2–O), 6.06 (s, 1H, O–CH–O), 6.09 (s, 1H, 151
O–CH–O), 6.45 (s, 1H, Ar–H), 6.56 (s, 1H, Ar–H), 6.71 (s, 1H, Ar–H), 7.48–7.27 (m, 152
5H, Ar–Hꢂ5), 7.63 (s, 1H, Ar–H), 11.92 (s, 1H, Ar–OH). 13C NMR (125 MHz, DMSO- 153
d6): d 169.0, 168.6, 157.3, 152.2, 151.5, 149.1, 148.1, 141.6, 136.7, 134.5, 131.4, 154
130.7, 129.4, 128.4, 127.9, 127.6, 111.7, 105.6, 104.7, 103.2, 102.6, 101.4, 76.9, 155
70.4, 55.5, 55.2, 52.3, 51.6, 13.6, 13.5. HRESIMS Calcd. for C32H31O10 [M+H]+: 156
575.1912, found: 575.1902. Compound 11: White solid, mp 206–207 8C. 1H NMR 157
(300 MHz, DMSO-d6): d 3.58 (s, 3H, –OCH3), 3.92 (s, 3H, –OCH3), 5.13 (s, 2H, Ar– 158
CH2–O), 5.36 (s, 2H, Ar–CH2–O), 6.09 (s, 2H, O–CH2–O), 6.53 (s, 1H, Ar–H), 6.62 (s, 159
1H, Ar–H), 6.90 (s, 1H, Ar–H), 7.46–7.24 (m, 5H, Ar–Hꢂ5), 7.62 (s, 1H, Ar–H), 10.50 160
(s, 1H, Ar–OH). 13C NMR (150 MHz, DMSO-d6): d 169.5, 150.5, 149.7, 148.1, 144.9, 161
141.7, 136.8, 134.7, 129.4, 129.4, 129.3, 128.4, 127.9, 127.7, 123.2, 121.7, 118.7, 162
111.4, 105.5, 105.0, 101.3, 100.7, 70.4, 66.6, 55.5, 55.1. HRESIMS Calcd. for 163
C28H23O8 [M+H]+: 487.1387, found: 487.1391. Compound 12: White solid, mp 164
223–224 8C. 1H NMR (300 MHz, DMSO-d6): d 3.58 (s, 3H, –OCH3), 3.93 (s, 3H, – 165
OCH3), 4.12 (s, 3H, –OCH3), 5.13 (s, 2H, Ar–CH2–O), 5.70 (s, 2H, Ar–CH2–O), 6.10 (s, 166
2H, O–CH2–O), 6.54 (s, 1H, Ar–H), 6.62 (s, 1H, Ar–H), 6.89 (s, 1H, Ar–H), 7.45–7.25 167
(m, 5H, Ar–Hꢂ5), 7.50 (s, 1H, Ar–H). 13C NMR (125 MHz, acetone-d6): d 168.9, 168
151.3, 150.1, 148.3, 147.3, 141.8, 136.9, 134.9, 132.6, 129.5, 129.1, 128.4, 128.0, 169
127.7, 124.9, 123.9, 119.1, 111.4, 105.7, 104.8, 101.4, 100.6, 70.6, 66.8, 59.2, 55.8, 170
55.3. HRESIMS Calcd. for C29H25O8 [M+H]+: 501.1544, found: 501.1535. Com- 171
pound 13: White solid, mp 142–143 8C. 1H NMR (300 MHz, DMSO-d6): d 3.66 (s, 172
3H, –OCH3), 3.93 (s, 3H, –OCH3), 4.12 (s, 3H, –OCH3), 5.69 (s, 2H, Ar–CH2–O), 6.03 173
(s, 2H, O–CH2–O), 6.32 (s, 1H, Ar–H), 6.35 (s, 1H, Ar–H), 6.97 (s, 1H, Ar–H), 7.50 (s, 174
1H, Ar–H), 9.73 (s, 1H, Ar–OH). 13C NMR (100 MHz, DMSO-d6): d 169.6, 151.9, 175
150.6, 148.9, 147.8, 141.2, 134.2, 133.5, 130.1, 129.4, 125.5, 124.4, 119.6, 113.9, 176
106.3, 103.2, 101.5, 101.2, 67.4, 59.7, 56.3, 55.9. HRESIMS Calcd. for C22H19O8 177
[M+H]+: 411.1074, found: 411.1072. Compound 14: Yellowish solid, mp 157– 178
158 8C. 1H NMR (400 MHz, DMSO-d6): d 3.60 (s, 3H–OCH3), 3.95 (s, 3H–OCH3), 179
4.14 (s, 3H–OCH3), 5.14–5.16 (m, 4H, Ar–CH2–Oꢂ2), 5.73 (s, 2H, Ar–CH2–O), 6.12 180
(s, 1H, O–CH–O), 6.13 (s, 1H, O–CH–O), 6.68 (s, 1H, Ar–H), 6.81 (s, 1H, Ar–H), 6.92 181
(s, 1H, Ar–H), 7.39–7.10 (m, 10H, Ar–Hꢂ10), 7.52 (s, 1H, Ar–H). 13C NMR 182
(125 MHz, DMSO-d6) d 169.4, 151.8, 150.3, 150.2, 148.1, 140.1, 139.5, 139.5, 183
133.3, 133.3, 130.4, 129.7, 129.7, 126.8, 126.8, 119.9, 119.9, 113.2, 110.9, 106.3, 184
101.7, 101.4, 98.2, 67.0, 60.2, 56.1, 55.8 31P NMR (200 MHz, DMSO-d6): d ꢀ6.28. 185
89
Acknowledgments
90
91
92
93
Q2
We thank National Major Scientific and Technological Special
Project for ‘Significant New Drugs Innovation’ (No.
2012ZX09301002-001), the Union Youth Science & Research Fund
(No. 3332013074) for financial support.
94
References
95
[1] C.C. Chen, W.C. Hsin, Y.L. Huang, Six new diarylbutane lignans from Justicia
procumbens, J. Nat. Prod. 61 (1998) 227–229.
96
97
[2] M.H. Yang, J. Wu, F. Cheng, Y. Zhou, Complete assignments of 1H and 13C NMR data
for seven arylnaphthalide lignans from Justicia procumbens, Magn. Reson. Chem.
44 (2006) 727–730.
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
[3] X.L. He, P. Zhang, X.Z. Dong, et al., JR6, a new compound isolated from Justicia
procumbens, induces apoptosis in human bladder cancer EJ cells through caspase-
dependent pathway, J. Ethnopharmacol. 144 (2012) 284–292.
[4] F. Qiu, S.J. Zhou, S.J. Fu, et al., LC–ESI-MS/MS analysis and pharmacokinetics of 60-
hydroxy justicidin A, a potential antitumor active component isolated from
Justicia procumbens, in rats, J. Pharm. Biomed. 70 (2012) 539–543.
[5] P. Zhang, W.Q. Zhou, X.Z. Dong, M.H. Yang, M.G. Bi, Effect of 60-hydroxy justicidin
A on cell proliferation and redox system in tumor cells, Chin. J. Pharmacol. Toxicol.
24 (2010) 207–213.
[6] P.Zhang, X.Z. Dong, Y.T.Zhou,M.H.Yang,M.G. Bi,MechanismofJR6toinducehuman
bladder cancer EJ cells apoptosis, Chin. Pharmacol. Bull. 25 (2009) 173–174.
[7] J.Y. Deng, M.H. Yang, M.G. Bi, In vitro anti-tumor mechanism of JR6 on human
colon cancer cell HT-29, Chin. Pharmacol. Bull. 25 (2009) 190–191.
[8] (a) P. Allevi, M. Anastasia, P. Ciuffreda, E. Bigatti, Stereoselective glucosidation of
podophyllum lignans. A new simple synthesis of etoposide, J. Org. Chem. 58
(1993) 4175–4178;
(b) M.G. Saulnier, D.R. Langley, J.F. Kadow, Synthesis of etoposide phosphate,
BMY-40481: a water-soluble clinically active prodrug of etoposide, Bioorg. Med.
Chem. Lett. 4 (1994) 2567–2572.
HRESIMS Calcd. for C36H31NaO11P [M+Na]+: 693.1496, found: 693.1492.
[15] Compound 15: White solid, mp 212–213 8C. The HRESIMS of 15 established a 187
molecular formula of C22H19O11
[m/z 513.0642 (M+Na)+, Calcd. for 188
186
[9] L. Xiong, M.G. Bi, S. Wu, Y.F. Tong, Total synthesis of 60-hydroxy justicidin A, J.
Asian Nat. Prod. Res. 14 (2012) 322–326.
P
C22H19NaO11P: 513.0640], indicating 14 degrees of unsaturation. 1H NMR spec- 189
trum showed three methoxy groups [dH 3.70 (s, 3H, H-13), 3.94 (s, 3H, H-14), 4.13 190
(s, 3H, H-15)] and four aromatic protons [dH 7.51 (s, 1H, H-5), 7.05 (s, 1H, H-8), 191
6.70 (s, 1H, H-20), 6.83 (s, 1H, H-60)]. 13C NMR and DEPT spectra exhibited 22 192
carbons, including three methyls, two methylenes, sixteen quaternary carbons 193
and one carbonyl. 31P NMR spectrum revealed the existence of one phosphate 194
ester. The HMBC correlations of H-5/C-4, C-7, C-9 and H-8/C-1, C-6, C-10 revealed 195
the present of naphthyl (ring A and ring B). The correlations from H-12 to C-2, C-3, 196
C-4 and C-11 suggested the present of ring C. The correlations of H-13/C-7, H-14/ 197
C-6 and H-15/C-4 gave the substituted positions of three methoxy groups. The 198
linkage of ring B and D was elucidated by the HMBC correlations from H-20 and H- 199
60 to C-1 and C-10. The correlations from H-70 to C-40 and C-50 revealed the 200
presence of ring E. The planar structure of 15 was thus established. 1H NMR 201
(400 MHz, DMSO-d6): d 7.51 (s, 1H, H-5), 7.05 (s, 1H, H-8), 5.71 (s, 2H, H-12), 3.70 202
(s, 3H, H-13), 3.94 (s, 3H, H-14), 4.13 (s, 3H, H-15), 6.70 (s, 1H, H-20), 6.83 (s, 1H, H- 203
60), 6.13 (d, 2H, J = 4.1 Hz, H-70). 13C NMR (125 MHz, DMSO-d6): d 132.3 (C-1), 204
116.9 (C-2), 119.4 (C-3), 147.8 (C-4), 101.3 (C-5), 151.7 (C-6), 150.5 (C-7), 106.0 205
(C-8), 128.6 (C-9), 129.7 (C-10), 169.4 (C-11), 67.3 (C-12), 55.7 (C-13), 56.1 (C-14), 206
59.6 (C-15), 125.3 (C-10), 107.6 (C-20), 148.9 (C-30), 137.2 (C-40), 148.9 (C-50), 116.9 207
[10] (a) S.P. Wang, Y.F. Tong, L. Li, S. Wu, Y. Qi, The synthesis of justicidinoside B and its
atropisomer, J. Asian Nat. Prod. Res. 15 (2013) 644–649;
(b) J.L. Charlton, C.J. Oleschuk, G.L. Chee, Hindered rotation in arylnaphthalene
lignans, J. Org. Chem. 61 (1996) 3452–3457.
[11] M.C. Carreno, J.L. Garcia Ruano, G. Sanz, M.A. Toledo, A. Urbano, N-bromosucci-
nimide in acetonitrile: a mild and regiospecific nuclear brominating reagent for
methoxybenzenes and naphthalenes, J. Org. Chem. 60 (1995) 5328–5331.
[12] W.G. Zhang, J.G. Lin, X.S. Yao, et al., Total synthesis of two new dihydrostilbenes
from Bulbophyllum odoratissimum, J. Asian Nat. Prod. Res. 9 (2007) 23–28.
[13] Data of compounds 3 and 8. Compound 3: White solid, mp 95–96 8C. 1H NMR
(300 MHz, DMSO-d6): d 3.74 (s, 3H, –OCH3), 3.77 (s, 3H, –OCH3), 3.98–3.89 (m, 2H,
C–CH2–C), 4.14–4.03 (m, 2H, C–CH2–C), 5.82 (s, 1H, Ar–CH–O), 7.03 (s, 1H, Ar–H),
7.12 (s, 1H, Ar–H). 13C NMR (100 MHz, DMSO-d6): d 190.8, 155.2, 149.3, 126.4,
120.0, 116.6, 111.1, 65.5, 63.5, 57.1, 56.3. HRESIMS Calcd. for C11H14BrO4 [M+H]+:
289.0070, found: 289.0064. Compound 8: White solid, mp 66–68 8C. 1H NMR
(400 MHz, DMSO-d6): d 5.23 (s, 2H, Ar–CH2–O), 6.14 (s, 2H, O–CH2–O), 7.09 (s, 1H,
Ar–H), 7.61–7.19 (m, 6H, Ar–Hꢂ6), 9.75 (s, 1H, –CHO). 13C NMR (100 MHz, DMSO-
d6): d 191.5, 149.9, 143.2, 141.6, 137.0, 132.1, 129.2, 128.8, 128.6, 113.6, 103.4,
103.1, 71.3. HRESIMS Calcd. for C15H13O4 [M+H]+: 257.0808, found: 257.0799.
[14] Data of compounds 9–14. Compound 9: White solid, mp 115–116 8C. 1H NMR
(400 MHz, DMSO-d6): d 3.66 (s, 3H, –OCH3), 3.72 (s, 3H, –OCH3), 3.97–3.84 (m, 2H,
(C-60), 102.1 (C-70). 31P NMR (200 MHz, DMSO-d6): d ꢀ5.83.
208
[16] National Pharmacopoeia Committee, Pharmacopoeia of People’s Republic of 209
China. Part 2, vol. XIV, Chemical Industry Press, Beijing, 2010.
210
Please cite this article in press as: S.-P. Wang, et al., Synthesis and cytotoxicity evaluation of a novel justicidin G analogue and its