Catalysis Science & Technology
Paper
merged flow was then introduced to the inlet of the packed-
bed column assembly (borosilicate glass with PTFE end
pieces, 6.6 mm in ID × 100 mm in length, OmniFit).
12 K. Mennecke and A. Kirschning, Synthesis, 2008, 20, 3267–3272.
13 A. Gömann, J. A. Deverell, K. F. Munting, R. C. Jones,
T. Rodemann, C. A. J. Canty, J. A. Smith and R. M. Guijt,
Tetrahedron, 2009, 65, 1450–1454.
The column was packed with a catalyst and has a catalytic
bed length of 2.3 cm, which corresponds to a packed bed vol-
ume of 0.787 mL. The measured amount of the catalyst was
diluted with QuadraSil AP (Johnson Matthey) spherical silica
beads. The void volume in the catalytic bed in the approxima-
tion of random close packing of ideal spheres is 0.295 mL
(the void fraction is about 0.375, neglecting the porosity of
the support). The mean residence times in the packed bed
were found to be 3.5 and 1.9 minutes in the cases of the sin-
gle phase and biphasic aqueous–organic flow, respectively
(calculated from the residence time distribution curves mea-
sured for the QuadraSil AP using a standard tracer tech-
nique). For the loadings of the catalysts used in this study
this void corresponds to an initial molar ratio of Ar–Br : Pd ≈ 2.1
in the reactor in the case of the biphasic aqueous–organic
flow or 0.4 in the case of the single phase conditions.
The catalytic loadings in the reactor are still quite high even
if we assume the porosity of the support to be about 60%
(ArBr : Pd ≈ 4.2 or 0.9 for the biphasic and single phase
conditions, respectively).
14 R. C. Jones, A. J. Canty, J. A. Smith, R. M. Guijt,
T. Rodemann, J. A. Smith and V.-A. Tolhurst, Tetrahedron,
2009, 65, 7474–7481.
15 K. Mennecke and A. Kirschning, Beilstein J. Org. Chem.,
2009, 5, 21.
16 U. Kunz, A. Kirschning, H.-L. Wen, W. Sodolenko, R. Cecilia,
C. O. Kappe and T. Turek, Catal. Today, 2005, 105, 318–324.
17 N. Karbass, V. Sans, E. García-Verdugo, M. I. Burguete and
S. V. Luis, Chem. Commun., 2006, 3095–3097.
18 N. Nikbin, M. Ladlow and S. V. Ley, Org. Process Res. Dev.,
2007, 11, 458–462.
19 G. Shore, S. Morin and M. G. Organ, Angew. Chem., Int. Ed.,
2006, 45, 2761–2766.
20 D. A. Snyder, C. Noti, P. H. Seeberger, F. Schael, T. Bieber,
G. Rimmel and W. Ehrfeld, Helv. Chim. Acta, 2005, 88, 1–9.
21 M. T. Rahman, T. Fukuyama, N. Kamata, M. Sato and I. Ryu,
Chem. Commun., 2006, 2236–2238.
22 Y. Uozumi, Y. M. A. Yamada, T. Beppur, N. Fukuyama,
M. Ueno and T. Kitamor, J. Am. Chem. Soc., 2006, 128,
15994–15995.
23 Y. M. A. Yamada, T. Watanabe, K. Torii and Y. Uozumi,
Chem. Commun., 2009, 5594–5596.
Acknowledgements
The authors are grateful to the 7th Framework Program
(NMP2-LA-2010-246461; SYNFLOW) and the Spanish Ministerio
de Economía y Competitividad (CTQ2010-14938/BQU, and a
Ramon y Cajal fellowship to C. Godard) for financial support.
24 Y. M. A. Yamada, T. Watanabe, T. Beppu, N. Fukuyama,
K. Torii and Y. Uozumi, Chem.
11311–11319.
– Eur. J., 2010, 16,
25 A. B. Theberge, G. Whyte, M. Frenzel, L. M. Fidalgo,
R. C. R. Wootton and W. T. S. Huck, Chem. Commun.,
2009, 6225–6227.
26 S. Ceylan, C. Firese, C. Lammel, K. MAzac and
A. Kirschning, Angew. Chem., Int. Ed., 2008, 47, 8950–8953.
27 S. Ceylan, L. Coutable, J. Wegner and A. Kirschning,
Chem. – Eur. J., 2011, 17, 1844–1893.
28 P. He, S. J. Haswell and P. D. I. Fletcher, Lab Chip, 2004, 4,
38–41.
29 P. He, S. J. Haswell and P. D. I. Fletcher, Appl. Catal.,
2004, 274, 111–114.
References
1 S. G. Newman and K. F. Jensen, Green Chem., 2013, 15,
1456–1472.
2 V. Kumar, M. Paraschivoiu and K. D. P. Nigam, Chem. Eng.
Sci., 2011, 66, 1329–1373.
3 L. Dalla-Vechia, B. Reichart, T. Glasnov, L. S. M. Miranda,
K. C. O. Kappe and R. O. M. A. de Souza, Org. Biomol. Chem.,
2013, 11, 6806–6813.
4 D. T. McQuade and P. H. Seeberger, J. Org. Chem., 2013, 78,
6384–6389.
30 E. Comer and M. G. Organ, J. Am. Chem. Soc., 2005, 127,
8160–8167.
5 C. Pavia, E. Ballerini, L. A. Vilona, F. Fiacalone, C. Aprile,
L. Vaccaro and M. Gruttadauria, Adv. Synth. Catal.,
2013, 355, 2007–2018.
6 J. M. Muñoz, J. Alcázar, A. de la Hoz and A. Díaz-Ortíz, Adv.
Synth. Catal., 2012, 354, 3456–3460.
7 K. Mennecke, W. Sodolenko and A. Kirschning, Synthesis,
2008, 10, 1589–1599.
8 N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457–2483.
9 N. Miyaura, Metal-Catalyzed Cross-Coupling Reactions,
Wiley-VCH, New York, 2004.
31 C. Ramarao, S. V. Ley, S. C. Smith, I. M. Shirley and
N. DeAlmeida, Chem. Commun., 2002, 1132–1133.
32 I. R. Baxendale, C. M. Griffiths-Jones, L. S. V. Ley and
G. K. Tranmer, Chem. – Eur. J., 2006, 12, 4407–4416.
33 G. C. Fortman and S. P. Nolan, Chem. Soc. Rev., 2011, 40,
5151–5169.
34 C. Valente, S. Calimsiz, K. H. Hoi, D. Mallik, M. Sayah and
M. G. Organ, Angew. Chem., Int. Ed., 2012, 51, 3314–3332.
35 V. Sans, F. Gelat, M. I. Burguete, E. Garcia-Verdugo and
S. V. Luis, Catal. Today, 2012, 196, 137–147.
10 F. Bellina, A. Carpita and R. Rossi, Synthesis, 2004, 115,
2419–2440.
11 T. Noel and S. L. Buchwald, Chem. Soc. Rev., 2011, 40,
5010–5029.
36 Z. S. Quershi, S. A. Revankar, M. V. Khedkar and
B. M. Bhanage, Catal. Today, 2012, 198, 148–153.
37 A. Monge-marcet, R. Pleixats, T. Parella, X. Catooën and
M. W. C. Man, J. Mol. Catal. A: Chem., 2012, 357, 59–66.
This journal is © The Royal Society of Chemistry 2014
Catal. Sci. Technol.