HIV Protease Inhibitory Activity
321
(CDCl3+CD3OD) δ 7.61–6.79 (m, 13H, Ph), 5.67 (s, 1H, pyrone),
3.79 (s, 3H, OCH3), 3.39 (d, 1H, J = 10.3 Hz, CH-Ph), 2.80 (m, 2H,
PhCH2), 2.48 (m, 1H, CH-pyrone), 1.89–1.54 (m, 3H, propyl and
cyclopropyl), 0.86 (t, 3H, J = 7.4 Hz, 3H), 0.68 (m, 1H, cyclopropyl),
0.49 (m, 1H, cyclopropyl), 0.24 (m, 2H, cyclopropyl). 3d: (CDCl3)
δ 7.78–6.83 (m, 13H, Ph), 5.66 (s, 1H, pyrone), 3.67 (d, 1H, J = 9.1 Hz,
PhCH), 2.79 (m, 2H, PhCH2), 2.46 (m, 1H, CH-pyrone), 1.67–1.53 (m,
3H, propyl and cyclopropyl), 0.85 (t, 3H, J = 7.3 Hz, CH3), 0.71 (m,
1H, cyclopropyl), 0.55 (m, 1H, cyclopropyl), 0.39 (m, 1H, cyclo-
propyl), 0.25 (m, 1H, cyclopropyl).
References
[1] a) T. L. Blundell, R. Lapatto, A, F. Wilderspin, A. M. Hemmings,
P. M. Hobart, D. E. Danlay, P. J. Whittle, Trends Biol. Sci. 1990, 15,
425–430, b) C. Debouck, B. W. Metcalf, Drug. Dev. Res. 1990, 21,
1–17.
[2] a) J. R. Huff, J. Med. Chem. 1991, 34, 2305–2314, b) T. D. Meek,
J. Enzyme Inhib. 1992, 6, 65–98, c) S. Thaisrivongs, Annu. Rep. Med.
Chem. 1994, 29, 133–144. d) D. Leung, G. Abbenante, D. P. Fairlie, J.
Med. Chem. 2000, 43, 305–341.
[3] J. J. Plattner, D. W. Norbeck, Obstacles to Drug Development from
Peptide Leads. In Drug Discovery Technologies; Clark, C. R., Moos,
W. H., Eds.; Ellis Horwood Ltd.: Chichester, 1990; Chapter 5, pp92–
126.
3e: (CDCl3+CD3OD) δ 8.21–6.78 (m, 13H, Ph), 5.65 (s, 1H, pyrone),
3.39 (d, 1H, J = 9.8 Hz, PhCH), 2.83 (m, 2H, PhCH2), 2.50 (m, 1H,
CH-pyrone), 1.87–1.53 (m, 3H, propyl and cyclopropyl), 0.87 (t, 3H, J
= 7.3 Hz, CH3), 0.69 (m, 1H, cyclopropyl), 0.48 (m, 1H, cyclopropyl),
0.24 (m, 2H, cyclopropyl). 3f: (CDCl3+CD3OD) δ 7.59–6.73 (m, 13H,
Ph), 5.70 (s, 1H, pyrone), 3.38 (d, 1H, J = 9.6 Hz, PhCH), 2.80–
2.71 (m, 2H, PhCH2), 2.34 (m, 1H, CH-pyrone), 2.13 (s, 3H, CH3CO),
1.92–1.49 (m, 3H, propyl and cyclopropyl), 0.83 (t, 3H, J = 7.3 Hz,
CH3), 0.68 (m, 1H, cyclopropyl), 0.48 (m, 1H, cyclopropyl), 0.25 (m,
2H, cyclopropyl). 3g: (CDCl3+CD3OD) δ 8.07–6.80 (m, 13H, Ph),
5.63 (s, 1H, pyrone), 3.40 (m, 1H, PhCH), 2.89–2.77 (m, 2H, PhCH2),
2.50 (m, 1H, CH-pyrone), 1.89–1.54 (m, 3H, propyl and cyclopropyl),
0.85 (t, 3H, J = 7.3 Hz, CH3), 0.68 (m, 1H, cyclopropyl), 0.49 (m, 1H,
cyclopropyl), 0.25 (m, 2H, cyclopropyl). 3h: (CDCl3) δ 8.64 (d, 1H, J
= 5.4 Hz, pyridine), 7.82–6.79 (m, 12H, pyridine and Ph) 5.66 (s, 1H,
pyrone), 3.66 (d, 1H, J = 9.4 Hz, PhCH), 2.77 (m, 2H, PhCH2), 2.42 (m,
1H, CH-pyrone), 1.69–1.62 (m, 3H, propyl and cyclopropyl), 0.83 (m,
3H, CH3), 0.73 (m, 1H, cyclopropyl), 0.55 (m, 1H, cyclopropyl),
0.39 (m, 1H, cyclopropyl), 0.24 (m, 1H, cyclopropyl). 3i: (CD3OD)
δ 8.72 (s, 1H, pyridine), 7.94–6.62 (m, 11H, pyridine and Ph), 5.59 (1s,
1H, pyrone), 3.12 (1H, overlapped with solvent, PhCH), 2.62 (m, 2H,
PhCH2), 2.36 (m, 1H, CH-pyrone), 1.69–1.43 (m, 3H, propyl and cy-
clopropyl), 0.69 (t, 3H, J = 7.4 Hz, CH3), 0.49 (m, 1H, cyclopropyl),
0.26 (m, 1H, cyclopropyl), 0.04–0.01 (m, 2H, cyclopropyl). 3j:
(CDCl3) δ 8.91 (s, 1H, pyridine), 8.03–6.83 (m, 11H, pyridine and Ph),
5.64 (s, 1H, pyrone), 3.67 (d, 1H, J = 9.2 Hz, PhCH), 2.80 (m, 2H,
PhCH2), 2.45 (m, 1H, CH-pyrone), 1.69–1.47 (m, 3H, propyl and cy-
clopropyl), 0.83 (t, 3H, J = 7.4 Hz, CH3), 0.69 (m, 1H, cyclopropyl),
0.54 (m, 1H, cyclopropyl), 0.37 (m, 1H, cyclopropyl), 0.24 (m, 1H,
cyclopropyl). 3k: (CDCl3+CD3OD) δ 9.37 (m, 1H, pyridine), 8.49–
6.78 (m, 11H, pyridine and Ph), 5.64 (s, 1H, pyrone), 3.37 (d, 1H, J
=10.0 Hz, PhCH), 2.83–2.75 (m, 2H, PhCH2), 2.43 (m, 1H, CH-py-
rone), 1.88–1.50 (m, 3H, propyl and cyclopropyl), 0.84 (t, 3H, J = 7.3
Hz, CH3), 0.68 (m, 1H, cyclopropyl), 0.45 (m, 1H, cyclopropyl), 0.25–
0.15 (m, 2H, cyclopropyl). 3l: (CD3OD) δ 7.92 (s, 1H, pyridine), 7.52–
6.73 (m, 11H, J = 9.0 Hz), 5.74 (s, 1H, pyrone), 3.32 (1H, overlapped
with solvent, PhCH), 2.81–2.73 (m, 2H, PhCH2), 2.46 (m, 1H, CH-py-
rone), 1.95–1.48 (m, 3H, propyl and cyclopropyl), 0.86 (m, 3H, CH3),
0.69 (m, 1H, cyclopropyl), 0.44 (m, 1H, cyclopropyl), 0.19–0.18 (m,
2H, cyclopropyl).
[4] S. Thaisrivongs, P. K. Tomich, K. D. Watenpaugh, K. T. Chong, W. J.
Howe, C.-P. Yang, J. W. Strohbach, S. R. Turner, J. P. McGrath, M. J.
Bohanon, J. C. Lynn, A. M. Mulichak, P. A. Spinelli, R. R. Hinshaw,
P. J. Pagano, J. B. Moon, M. J. Ruwart, K. F. Wilkinson, B. D. Rush,
G. L. Zipp, R. J. Dalga, F. J. Schwende, G. M. Howard, G. E. Padbury,
L. N. Toth, Z. Zhao, K. A. Koeplinger, T. J. Kakuk, S. L. Cole, R. M.
Zaya, R. C. Piper, P. Jeffrey, J. Med. Chem. 1994, 37, 3200–3204.
[5] H. I. Skulnick, P. D. Johnson, W. J. Howe, P. K. Tomich, K.-T. Chong,
K. D. Watenpaugh, M. N. Janakiraman, L. A. Dolak, J. P. McGrath, J.
C. Lynn, M.-M. Horng, R. R. Hinshaw, G. L. Zipp, M. J. Ruwart, F. J.
Schwende, W.-Z, Zhong, G. E. Padbury, R. J. Dalga, L. Shiou, P. I.
Possert, B. D. Rush, K. F. Wilkinson, G. M. Howard, L. N. Toth, M.
G. Williams, T. J. Kakuk, S. L. Cole, R. M. Zaya, K. D. Lovasz, J. K.
Morris, K. R. Romines, S. Thaisrivongs, P. A. Aristoff, J. Med. Chem.
1995, 38, 4968–4971.
[6] S. Thaisrivongs, M. N. Janakiraman, K.-T. Chong, P. K. Tomich, L. A.
Dolak, S. R. Turner, J. W. Strohbach, J. C. Lynn, M.-M. Horng, R. R.
Hinshaw, K. D. Watenpaugh, J. Med. Chem. 1996, 39, 2400–2410.
[7] a) M. Miller, J. Schneider, B. K. Sathyanarayana, M. V. Toth, G. R.
Marshall, L. Clawson, L. Selk, S. B. H. Kent, A. Wlodawer, Science
1989, 246, 1149–1152. b) M. Clare, Perspect. Drug Dis. Des. 1993, 1,
49–68.
[8] All new compounds are characterized by 300 MHz 1H NMR spectros-
copy. 5: (DMSO-d6) δ 7.36 (d, 2H, J = 7.3 Hz, Ph), 7.23 (dd, 2H, J =
7.3, 6.9 Hz, Ph), 7.13 (d, 1H, J = 6.9 Hz, Ph), 6.00 (s, 1H, pyrone),
3.23 (d, 1H, J = 10.4 Hz, PhCH-), 2.13 (s, 3H, CH3), 1.85 (m, 1H,
cyclopropyl), 0.63–0.17 (m, 4H, cyclopropyl). 6: (CDCl3) δ 7.50 (d,
2H, J = 7.5 Hz, Ph), 7.30 (dd, 2H, J=7.5, 7.2 Hz, Ph), 7.22 (d, 1H, J =
7.2 Hz, Ph), 5.93 (s, 1H, pyrone), 3.62 (d, 1H, J = 9.6 Hz, PhCH-),
2.37 (t, 2H, J = 7.5 Hz, propyl), 1.75–1.59 (m, 3H, propyl & cyclo-
propyl), 0.95 (t, 3H, J = 7.4 Hz, propyl), 0.71–0.28 (m, 4H, cyclo-
propyl). 7: (CDCl3) δ 8.10 (m, 1H, Ph), 7.96 (s, 1H, Ph), 7.49–7.27 (m,
7H), 6.87 (br, 1H, OH), 5.62 (s, 1H, pyrone), 3.81 (m, 1H, PhCH-),
3.07–2.98 (m, 2H, m-NO2-Ph-CH2), 2.55 (m, 1H, CH-pyrone),
1.70 (m, 2H, propyl), 1.29 (m, 1H, cyclopropyl), 0.92 (t, 3H, J = 7.4
Hz, CH3), 0.75 (m, 1H, cyclopropyl), 0.66 (m, 1H, cyclopropyl),
0.47 (m, 1H, cyclopropyl), 0.28 (m, 1H, cyclopropyl).
9: (CDCl3) δ 7.50–7.07 (m, 10H, Ph), 6.51 (br, 1H, OH), 5.58 (s, 1H,
pyrone), 3.86 (d, 1H, J = 8.9 Hz, PhCH), 2.96–2.83 (m, 2H, PhCH2),
2.52 (m, 1H, CH-pyrone), 1.72–1.40 (m, 3H, propyl and cyclopropyl),
0.88 (m, 3H, CH3), 0.75–0.68 (m, 1H, cyclopropyl), 0.62–0.49 (m, 2H,
cyclopropyl), 0.31–0.25 (m, 1H, cyclopropyl).
8: (CDCl3) δ 7.43–7.21 (m, 6H, Ph and OH), 6.95 (t, 1H, J = 7.7 Hz,
Ph), 6.43 (m, 2H, Ph), 6.33 (s, 1H, Ph), 5.52 (s, 1H, pyrone), 3.81 (m,
1H, PhCH), 2.78 (m, 1H, CH-pyrone), 2.65 (m, 1H, m-NH2Ph-CH),
2.43 (m, 1H, m-NH2Ph-CH), 1.65–1.50 (m, 4H, NH2 and propyl),
1.19 (m, 1H, cyclopropyl), 0.79 (t, 3H, J = 7.4 Hz, CH3), 0.67–0.65 (m,
1H, cyclopropyl), 0.54–0.43 (m, 2H, cyclopropyl), 0.23–0.18 (m, 1H,
cyclopropyl). 3a: (CDCl3+CD3OD) δ 7.68–6.79 (m, 14H, Ph),
5.66 (1s, 1H, pyrone), 3.39 (d, 1H, J = 9.8 Hz, PhCH), 2.80 (m, 2H,
PhCH2), 2.48 (m, 1H, CH-pyrone), 1.85–1.54 (m, 3H, propyl and
cyclopropyl), 0.86 (t, 3H, J = 7.3 Hz, CH3), 0.67 (m, 1H, cyclopropyl),
0.49–0.47 (m, 1H, cyclopropyl), 0.24 (m, 2H, cyclopropyl). 3b:
(CDCl3+CD3OD) δ 7.51–6.78 (m, 13H, Ph), 5.68 (1s, 1H, pyrone),
3.37 (d, 1H, J = 10.1 Hz, PhCH), 2.80 (m, 2H, PhCH2), 2.45 (m, 1H,
CH-pyrone), 2.35 (s, 3H, CH3-Ph), 1.91–1.51 (m, 3H, propyl and cy-
clopropyl), 0.86 (t, 3H, J = 7.3 Hz, CH3), 0.68 (m, 1H, cyclopropyl),
0.49 (m, 1H, cyclopropyl), 0.24 (m, 2H, cyclopropyl). 3c:
[9] HIV protease inhibitory activity was measured as follows: HIV pro-
tease and the fluorogenic substrate, Abz-Thr-Ile-Nle-p-nitro-Phe-Gln-
Arg-NH2 were purchased from Bachem Bioscience. The compounds
were serially diluted by 10 fold with assay buffer (50 mM sodium
acetate, pH 5.2, 200 mM NaCl, 5 mM dithiothreitol, 10% glycerol).
Reaction mixture consisted of 9 µl of 10× concentrated compounds, 6.5
µl of 1 mg/ml substrate dissolved in 100% DMSO, 72.5 µl assay buffer
and 2 µl of HIV protease. The reaction was initiated by addition of 2 µl
of HIV protease (0.7 µg/µl) and incubated at room temperature. The
activity was measured by monitoring the increase in fluorescence
intensity at the emission maximum of 460 nm (excitation wavelength
was 345 nm) using fluorescence microplate reader (Fluoroskan Ascent,
Labsystems).
Arch. Pharm. Pharm. Med. Chem. 333, 319–322 (2000)