SHORT COMMUNICATION
the solution was placed in a 15 mL screw-capped (polypropylene)
glass vial. This was heated at 100 °C for 48 h and then cooled
slowly at room temperature. The pale cream colored crystals
formed were filtered, washed with water, ethanol, and diethyl ether,
and dried in air. Some of them were suitable for single-crystal X-ray
data collection. Yield 83 mg, 61%. For 1 [MnC12H13NO7 (338.18)]:
calcd. C 42.62, H 3.87, N 4.14; found C 42.37, H 3.99, N 4.11. IR
Program: Thales. Investing in knowledge society through the Euro-
pean Social Fund).
[1] a) C. Janiak, J. L. Vieth, New J. Chem. 2010, 34, 2366–2388; b)
J. R. Long, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1213–1214;
c) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk,
Chem. Soc. Rev. 2009, 38, 1330–1352; d) W. L. Leong, J. J. Vit-
tal, Chem. Rev. 2011, 111, 688–764; e) H.-C. Zhou, J. R. Long,
O. M. Yaghi, Chem. Rev. 2012, 112, 673–674.
[2] a) I. Imaz, M. Rubio-Martinez, J. An, I. Solé-Font, N. L. Rosi,
D. Maspoch, Chem. Commun. 2011, 47, 7287–7302; b) A.
Mantion, L. Massüger, P. Rabu, L. B. McCusker, A. Taubert,
J. Am. Chem. Soc. 2008, 130, 2517–2526; c) J. Rabone, Y.-F.
Yue, S. Y. Chong, K. C. Stylianou, J. Bacsa, D. Bradshaw,
G. R. Darling, N. G. Berry, Y. Z. Khimyak, A. Y. Ganin, P.
Wiper, J. B. Claridge, M. J. Rosseinsky, Science 2010, 329,
1053–1057; d) C. Marti-Gastado, J. E. Warren, K. C. Sty-
lianou, N. L. O. Flack, M. J. Rossiensky, Angew. Chem. Int. Ed.
2012, 51, 11044–11048; Angew. Chem. 2012, 124, 11206.
[3] a) B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1990, 112,
1546–1554; b) M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura, J.
Am. Chem. Soc. 1994, 116, 1151–1152.
[4] a) J. Y. Lee, O. K. Fartha, J. Roberts, K. A. Scheidt, S. T.
Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450–1459; b)
A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev.
2010, 110, 4606–4655; c) A. U. Czaja, N. Trukhan, U. Müller,
Chem. Soc. Rev. 2009, 38, 1284–1293; d) S.-H. Cho, B. Ma,
S. T. Nguyen, J. T. Hupp, T. E. Albrecht-Schmitt, Chem. Com-
mun. 2006, 2563–2565.
[5] a) M. Tonigold, Y. Lu, B. Bredenkötter, B. Rieger, S.
Bahnmüller, J. Hitzbleck, G. Langstein, D. Volkmer, Angew.
Chem. Int. Ed. 2009, 48, 7546–7550; Angew. Chem. 2009, 121,
7682; b) J. A. Greathouse, M. D. Allendorf, J. Am. Chem. Soc.
2006, 128, 10678–10679.
(KBr): ν = 3296 (m), 3194 (m) ν(O–H), 2932 (w) ν(C–H), 1708 (s),
˜
1670 (m) ν(C=O), 1594 νas(CO2), 1444 νs(CO2), 1418 (m) δ(CH2),
1342 (m), 1276 (m), 1252 (m), ν(C–O), 1186 (w), 1114 (w), 1094
(w), 980 (w), 940 (w), 868 (w), 792 (m), 746 (m), 702 (w), 642 (w),
564 (w) cm–1.
Catalytic Reactions: Typical conditions employed in catalytic reac-
tions were: 1 equiv. of catalyst, 2000 equiv. of H2O2 30% (w/w),
and 1000 equiv. of substrate and additive. The alkene (1 mmol),
acetophenone or bromobenzene (internal standard, 1 mmol), cata-
lyst (1 μmol of asymmetric unit if 1), and additive (typically 1 mmol
of CH3COONH4) in an acetone/MeOH (450 μL/400 μL) solvent
mixture were cooled to 0 °C. H2O2 (2 mmol) was added by a digi-
tally controlled syringe pump (type SP101IZ WPI) over 1 h whilst
stirring. 10 min later, the test tube was removed from the ice bath
and warmed to room temperature (26Ϯ1 °C). The progress of the
reaction was monitored by GC–MS, by removing small samples
of the reaction mixture. GC analysis of the solution provided the
substrate conversion and product yield relative to the internal stan-
dard integration. To establish the identity of the epoxide product
unequivocally, the retention time and spectroscopic data were com-
pared to those of an authentic sample. Blank experiments showed
that without Mn catalyst or CH3COONH4, epoxidation reactions
do not take place.
Single-Crystal X-ray Structure Analyses: Details of crystal data,
data collection, and refinement are given in Table S1. Diffraction
measurements were made with a Rigaku R-AXIS SPIDER Image
Plate diffractometer by using graphite-monochromated Cu-Kα radi-
ation (λ = 1.54178 Å). Data collection (ω-scans) and processing
(cell refinement, data reduction, and empirical absorption correc-
tion) were performed with the CrystalClear program package.[21]
The structure was solved by direct methods by using SHELXS-97
and refined by the full-matrix least-squares technique with
SHELXL-97.[22] Further experimental crystallographic details for
1: 2θmax = 130°; reflections collected/unique/used, 13722/2090 [Rint
[6] See for example: a) A. Bhunia, M. A. Gotthardt, M. Yadav,
M. T. Gamer, A. Eichhöfer, W. Kleisr, P. W. Roesky, Chem. Eur.
J. 2013, 19, 1986–1995; b) O. K. Farha, A. M. Shultz, A. A.
Sarjeant, S. T. Nguyen, J. T. Hupp, J. Am. Chem. Soc. 2011,
133, 5652–5655; c) F. Song, C. Wang, J. M. Falkowski, L. Ma,
W. Lin, J. Am. Chem. Soc. 2010, 132, 15390–15398; d) Y. Hu-
ang, T. Liu, J. Lin, J. Lü, Z. Lin, R. Cao, Inorg. Chem. 2011,
50, 2191–2198.
[7] I. Vlahou, N. Kourkoumelis, A. Michaelides, S. Skoulika, J. C.
Plakatouras, Inorg. Chim. Acta 2006, 359, 3540–3548.
[8] a) G. E. Kostakis, E. Nordlander, N. Hadjiliadis, M. Haukka,
J. C. Plakatouras, Inorg. Chem. Commun. 2006, 9, 915–919; b)
G. E. Kostakis, G. Malandrinos, E. Nordlander, M. Haukka,
J. C. Plakatouras, Polyhedron 2009, 28, 3227–3234; c) G. E. Ko-
stakis, E. Nordlander, A. C. Tsipis, M. Haukka, J. C. Plakat-
ouras, Inorg. Chem. Commun. 2011, 14, 87–91.
= 0.0563]/2090; 240 parameters refined; (Δ/σ)max = 0.001; (Δρ)max
/
(Δρ)min = 0.517/–0.634 eÅ–3; R1/wR2 (for all data), 0.0523/0.1128.
All hydrogen atoms were located by difference maps and were re-
fined isotropically; all non-H atoms were refined anisotropically.
[9] a) J. G. Servetas, G. E. Kostakis, M. Haukka, T. Bakas, J. C.
Plakatouras, Polyhedron 2009, 28, 3322–3330; b) K. F. Konid-
aris, C. N. Morrison, J. G. Servetas, M. Haukka, Y. Lan, A. K.
Powell, J. C. Plakatouras, G. E. Kostakis, CrystEngComm
2012, 14, 1842–1849.
CCDC-1001832 (for 1) and -1001833 (for LH3·H2O) contain the
supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[10] a) G. E. Kostakis, L. Casella, N. Hadjiliadis, E. Monzani, N.
Kourkoumelis, J. C. Plakatouras, Chem. Commun. 2005, 3859–
3861; b) G. E. Kostakis, L. Casella, A. K. Boudalis, E. Mon-
zani, J. C. Plakatouras, New J. Chem. 2011, 35, 1060–1071.
[11] See for example: a) J. C. Goodwin, D. J. Price, S. L. Heath, Dal-
ton Trans. 2004, 2833–2835; b) L. Dubois, L. Jacquamet, J.
Pecant, J.-M. Latour, Chem. Commun. 2006, 4521–4523; c) H.
Wang, Z. Wang, J.-Y. Han, Acta Crystallogr., Sect. E 2006,
62, m1344–m1345; d) N. M. Sanchez-Ballester, L. K. Shrestha,
M. R. J. Elsegood, W. Schmitt, K. Ariga, C. E. Anson, J. P.
Hill, A. K. Powell, Dalton Trans. 2013, 42, 2779–2785.
[12] Q.-Z. Zhang, C.-Z. Lu, Acta Crystallogr., Sect. E 2004, 60,
m1189–m1190.
Supporting Information (see footnote on the first page of this arti-
cle): Spectra and figures related to the characterization of ligand
LH3 (IR, NMR, molecular structure) and complex
[Mn(LH)(H2O)] (IR, TG, DTA, and XRD), as well as and crystal-
lographic tables.
Acknowledgments
This research has been co-financed by the European Union (Euro-
pean Social Fund - ESF) and Greek national funds through the
National Strategic Reference Framework (NSRF) (Operational
Program “Education and Lifelong Learning” – Research Funding
[13] a) S. Qiao, G.-P. Yong, Y. Xie, Z.-Y. Wang, J. Coord. Chem.
2008, 61, 1645–1654; b) Q. Chu, G.-X. Liu, T.-A. Okamura,
Eur. J. Inorg. Chem. 2014, 3638–3644
3643
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim