RSC Advances
Paper
127.2, 126.8, 126.5, 123.1, 119.5, 119.1, 109.5, 50.8, 24.1; anal.
calcd for C22H18ClN3O: C, 70.30; H, 4.83; N, 11.18. Found: C,
70.37; H, 4.93; N, 11.14%.
Acknowledgements
We gratefully acknowledge nancial support from the Research
3.7.4. 1-(((4-Chloro-6-methylpyrimidin-2-yl)amino)(4-chlor-
ophenyl)methyl)naphthalen-2-ol (6u). IR (KBr): nmax ¼ 3379,
3059, 2992, 1628, 1572, 1516, 1437, 1358, 1289, 1269, 1211,
1092, 1014, 899, 814, 742 cmꢀ1; 1H-NMR (300 MHz, DMSO-d6): d
¼ 10.28 (s, 1H), 8.05 (d, J ¼ 7.4, 1H), 7.82–7.75 (m, 3H), 7.46–
7.27 (m, 8H), 6.66 (s, 1H), 2.25 (s, 3H); 13C-NMR (75 MHz,
DMSO-d6): d ¼ 171.0, 161.9, 157.5, 154.5, 153.9, 141.9, 140.2,
132.5, 131.9, 130.8, 130.0, 129.3, 128.6, 128.4, 128.1, 123.3,
118.4, 116.9, 99.4, 50.4, 18.8; anal. calcd for C22H17Cl2N3O: C,
64.40; H, 4.18; N, 10.24. Found: C, 64.44; H, 4.23; N, 10.28%.
3.7.5. 1-((2-Chloro-6-uorophenyl) ((4-chloro-6-methylpyr-
imidin-2-yl)amino)methyl) naphthalen-2-ol (6v). IR (KBr): nmax
¼ 3420, 3065, 2996, 1630, 1572, 1518, 1437, 1373, 1290, 1269,
Council of Arak University.
References
1 A. Strecker, Justus Liebigs Ann. Chem., 1850, 75, 27–45.
2 N. K. Terret, M. Gardener, D. W. Gordon, R. J. Kobylecki and
J. Steele, Tetrahedron, 1995, 51, 8135–8173.
3 L. A. Thomson and J. A. Ellman, Chem. Rev., 1996, 96, 555–
600.
4 A. Domling and I. Ugi, Angew. Chem., Int. Ed., 2000, 39, 3168–
3210.
5 N. Ahmed and J. E. van Lie, Tetrahedron Lett., 2007, 48, 5407–
5409.
6 A. Domling, Chem. Rev., 2006, 106, 17–89.
7 M. Kidwai and R. Chauhan, J. Mol. Catal. A: Chem., 2013, 377,
1–6.
8 A. Hasaninejad, S. Firoozi and F. Mandegani, Tetrahedron
Lett., 2013, 54, 2791–2794.
1
1238, 1175, 1101, 1057, 950, 897, 808, 775, 741 cmꢀ1; H-NMR
(300 MHz, DMSO-d6): d ¼ 9.91 (s, 1H), 8.10 (d, J ¼ 7.5, 1H), 7.81–
7.77 (m, 3H), 7.44–7.08 (m, 7H), 6.63 (s, 1H), 2.23 (s, 3H); 13C-
NMR (75 MHz, DMSO-d6): d ¼ 171.5, 157.7, 154.7, 154.2, 133.6,
132.5, 131.0, 129.8, 129.3, 128.4, 127.4, 126.3, 126.2, 123.0,
122.8, 122.4, 119.0, 115.9, 115.3, 98.7, 48.4, 18.8; anal. calcd for
9 S. Knapp, Chem. Rev., 1995, 95, 1859–1876.
C
22H16Cl2FN3O: C, 61.70; H, 3.77; N, 9.81. Found: C, 61.66; H, 10 D. Seebach and J. L. Matthews, Chem. Commun., 1997, 2015–
3.84; N, 9.83%.
2022.
3.7.6. 1-(((4-Chloro-6-methylpyrimidin-2-yl)amino)(2-chlor- 11 E. Juaristi, in Enantioselective Synthesis of b-Aminoacids, John
ophenyl)methyl)naphthalen-2-ol (6w). IR (KBr): nmax ¼ 3421,
Wiley & Sons, New York, 1997.
3057, 2990, 1630, 1572, 1528, 1440, 1359, 1288, 1271, 1211, 12 A. Y. Shen, C. T. Tsai and C. L. Chen, Eur. J. Med. Chem.,
1122, 1067, 897, 816, 775, 742 cmꢀ1; 1H-NMR (300 MHz, DMSO-
1999, 34, 877–882.
d6): d ¼ 10.04 (s, 1H), 8.12 (s, 1H), 8.01 (d, J ¼ 7.1, 1H), 7.76 (t, J ¼ 13 T. Dingermann, D. Steinhilber and G. Folkes, Molecular
7.5, 2H), 7.53 (s, 1H), 7.42–7.15 (m, 8H), 6.61 (s, 1H), 2.22 (s, 3H);
Biology in Medicinal Chemistry, Wiley-VCH, 2004.
13C-NMR (75 MHz, DMSO-d6): d ¼ 171.4, 157.6, 154.3, 138.1, 14 R. Hulst, H. Heves, N. C. M. W. Peper and R. M. Kellogg,
137.0, 132.5, 130.8, 130.1, 129.9, 129.5, 129.2, 128.5, 127.2,
Tetrahedron: Asymmetry, 1996, 7, 1373–1384.
123.2, 122.6, 122.1, 118.9, 115.7, 114.8, 98.8, 49.9, 18.9; anal. 15 X. Li, C.-H. Yeung, A. S. C. Chan and T.-K. Yang, Tetrahedron:
calcd for C22H17Cl2N3O: C, 64.4; H, 4.18; N, 10.24. Found: C,
64.33; H, 4.24; N, 10.16%.
Asymmetry, 1999, 10, 759–763.
16 M. M. Khodaei, A. R. Khosropour and H. Moghanian, Synlett,
2006, 916–920.
17 S. Kantevari, S. V. N. Vuppalapati and L. Nagarapu, Catal.
Commun., 2007, 8, 1857–1862.
4. Conclusions
In conclusion,
composite (MNPs–PhSO3H) was prepared by a very simple and
inexpensive method, and was characterized by FT-IR, XRD, TG- 19 H. R. Shaterian, H. Yarahmadi and M. Ghashang, Bioorg.
DTG, FE-ESM, EDS, TEM, VSM and acid–base titration. This Med. Chem. Lett., 2008, 18, 788–792.
catalyst has been successfully applied in a one-pot three- 20 R. Ghorbani-Vaghei and S. M. Malaekehpour, Cent. Eur.
component condensation of amide/amine/urea with aldehyde J. Chem., 2010, 8, 1086–1089.
and 2-naphthol under solvent-free conditions to prepare 21 M. Wang, Y. Liang, T. T. Zhang and J. J. Gao, Chem. Nat.
1-amido or 1-aminoalky-2-naphthols in high yields (up to 96%). Compd., 2012, 48, 185–188.
High catalytic activity, generality, high yields, short reaction 22 A. R. Supale and G. S. Gokavi, J. Chem. Sci., 2010, 122, 189–
times and the simple experimental procedure combined with 192.
a
new magnetic organic–inorganic nano- 18 B. Das, K. Laxminarayana, B. Ravikanth and B. R. Rao, J. Mol.
Catal. A: Chem., 2007, 261, 180–183.
the ease of work-up of the product make this method conve- 23 M. Zandi and A. R. Sardarian, C. R. Chim., 2012, 15, 365–369.
nient and environmentally benign for synthesis of 1-amido- or 24 G. H. Mahdavinia and M. A. Bigdeli, Chin. Chem. Lett., 2009,
1-aminoalky-2-naphthols. The present method is applicable to a
wide variety of aldehydes, and amides or urea or amines for the 25 M. Wang, Y. Liang, T. T. Zhang and J. J. Gao, Chin. Chem.
synthesis of corresponding 1-amido- or 1-aminoalky-2-naph- Lett., 2012, 23, 65–68.
thols. Moreover, the catalyst is stable under the reaction 26 H. Hashemi and A. R. Sardarian, J. Iran. Chem. Soc., 2013, 10,
conditions and can be readily separated by use of a magnet and 745–750.
reused without any signicant loss of catalytic activity aer six 27 G. C. Nandi, S. Samai, R. Kumar and M. S. Singh, Tetrahedron
20, 383–386.
runs.
Lett., 2009, 50, 7220–7222.
28184 | RSC Adv., 2014, 4, 28176–28185
This journal is © The Royal Society of Chemistry 2014