Metalated Nitriles
C-Metalated nitriles were experimentally inferred14
during pioneering deuterations of the chiral cyclopro-
panecarbonitrile 4.15 MeONa-MeOD deuteration pro-
ceeds with greater than 99.9% stereochemical retention
in generating 6a, presumably through the intermediacy
of the transient ion pair 5.16 In contrast, sequential
deprotonation-protonation with LDA causes complete
racemization (4 f 6b) of the putative9b,c intermediate
N-metalated nitrile 7 (Scheme 1).
with alkaline earth or transition metals.18 For example,
solution NMR of the magnesiated nitrile 819 and the
zincated nitrile 920 (Figure 2) imply metalation on carbon
in a trend that is maintained within numerous crystal
structures of transition metal complexes.18 Particu-
larly dramatic are the seminal heat-induced inter-
conversions of the crystalline ruthenium C- and N-
phenylsulfonylacetonitriles 10 and 11, in which the
preference for C- or N-coordination depends on the
phosphine ligand.21
SCHEME 1. Stereochemical Integrity of C- and
N-Metalated Nitriles
FIGURE 2. Solution and X-ray structures of C- and N-
metalated nitriles.
The absence of lithium as the counterion may facilitate
maintaining the stereochemical integrity since almost
all17 subsequent examples of C-metalated nitriles are
Selective formation of C- and N-metalated nitriles
offers the possibility for controlling regio- and stereo-
selective alkylations in previously undeveloped ways.
Precedent for divergent reactivity of C- and N-metalated
nitriles stems from metal-dependent cyclization22 and
carbonyl addition23 stereoselectivities, and metal-depend-
ent alkylation chemoselectivities.24 Efforts to harness
reactivity differences between C- and N-metalated ni-
triles stimulated a general route to metalated nitriles
having a variety of metal counterions, that, indeed,
exhibit reactivities which complement metal amide depro-
tonation-electrophilic alkylation of nitriles.25
(6) Fatiadi, A. J. In The Chemistry of Triple-Bonded Functional
Groups. Supplement C; Patai, S., Rappoport, Z., Eds.; Wiley: New York,
1983; pp 1157-1190.
(7) (a) Koch, R.; Wiedel, B.; Anders, E. J. Org. Chem. 1996, 61, 2523.
(b) For the related deprotonation of cyclopropanecarbonitrile see:
Carlier, P. R. Chirality 2003, 15, 340.
(8) Boche, G. Angew. Chem., Int. Ed. 1989, 28, 277.
(9) For leading references see: (a) Corset, J.; Castella`-Ventura, M.;
Froment, F.; Strzalko, T.; Wartski, L. J. Org. Chem. 2003, 68, 3902.
(b) Carlier, P. R.; Lo, C. W.-S. J. Am. Chem. Soc. 2000, 122, 12819. (c)
Carlier, P. R.; Lucht, B. L.; Collum, D. B. J. Am. Chem. Soc. 1994,
116, 11602.
(10) Le Questel, J.-Y.; Berthelot, M.; Laurence C. J. Phys. Org.
Chem. 2000, 13, 347. The bond length is the mean of CN distance
obtained from 5059 nitriles in the Cambridge Structural Database.
(11) Zarges, W.; Marsch, M.; Harms, K.; Boche, G. Angew. Chem.,
Int. Ed. 1989, 28, 1392.
(17) The only X-ray structure of a C-lithiated nitrile is for an N-
and C-lithiated cyclopropanecarbonitrile dimer: Boche, G.; Harms, K.;
Marsch, M. J. Am. Chem. Soc. 1988, 110, 6925.
(12) (a) Reference 8. (b) For stereoinduction with ephedrine ligands
see: Carlier, P. R.; Lam, W. W.-F.; Wan, N. C.; Williams, I. D. Angew.
Chem., Int. Ed. 1998, 37, 2252.
(18) (a) Alburquerque, P. R.; Pinhas, A. R.; Krause Bauer, J. A.
Inorg. Chim. Acta 2000, 298, 239. (b) Ragaini, F.; Porta, F.; Fumagalli,
A.; Demartin, F. Organometallics 1991, 10, 3785. (c) Porta, F.; Ragaini,
F.; Cenini, S.; Demartin, F. Organometallics 1990, 9, 929. (d) Cowan,
R. L.; Trogler, W. J. Am. Chem. Soc. 1989, 111, 4750. (e) Del Pra, A.;
Forsellini, E.; Bombieri, G.; Michelin, R. A.; Ros, R. J. Chem. Soc.,
Dalton Trans. 1979, 1862. (f) Lenarda, M.; Pahor, N. B.; Calligaris,
M.; Graziani, M.; Randaccio, L. J. Chem. Soc., Chem. Commun. 1978,
279. (g) Schlodder, R.; Ibers, J. A.; Lenarda, M.; Graziani, M. J. Am.
Chem. Soc. 1974, 96, 6893.
(13) Sott, R.; Granander, J.; Hilmersson, G. J. Am. Chem. Soc. 2004,
126, 6798.
(14) Walborsky, H. M.; Motes, J. M. J. Am. Chem. Soc. 1970, 92,
2445.
(15) Subsequent approaches to chiral metalated nitriles have em-
ployed noncovalently linked chiral additives: (a) Suto, Y.; Kumagai,
N.; Matsunaga, S.; Kanai, M.; Shibasaki, M. Org. Lett. 2003, 5, 3147.
(b) Reference 12b. (c) Kuwano, R.; Miyazaki, H.; Ito, Y. Chem. Commun.
1998, 71. (d) Soai, K.; Hirose, Y.; Sakata, S. Tetrahedron: Asymmetry
1992, 3, 677. (e) Soai, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1979,
52, 3371. For metalated nitriles containing chiral auxiliaries see: (f)
Enders, D.; Shilvock, J. P.; Raabe, G. J. Chem. Soc., Perkin Trans. I
1999, 1617. (g) Roux, M.-C.; Patel, S.; Me´rienne, C.; Morgant, G.;
Wartski, L. Bull. Chem. Soc. Fr. 1997, 134, 809. (h) Schrader, T. Chem.
Eur. J. 1997, 3, 1273. (i) Enders, D.; Kirchhoff, J.; Lausberg, V. Liebigs.
Ann. 1996, 1361. (j) Roux, M.-C.; Wartski, L.; Nierlich, M.; Lance, M.
Tetrahedron 1996, 52, 10083. (k) Enders, D.; Kirchhoff, J.; Mannes,
D.; Raabe, G. Synthesis 1995, 659. (l) Cativiela, C.; D´ıaz-de-Villegas,
M. D.; Ga´lvez, J. A.; Lapen˜a, Y. Tetrahedron 1995, 51, 5921. (m)
Cativiela, C.; D´ıaz-de-Villegas, M. D.; Ga´lvez, J. A. J. Org. Chem. 1994,
59, 2497. (n) Enders, D.; Mannes, D.; Raabe, G. Synlett 1992, 837. (o)
Enders, D.; Gerdes, P.; Kipphardt, H. Angew. Chem., Int. Ed. Engl.
1990, 29, 179. (p) Hanamoto, T.; Katsuki, T.; Yamaguchi, M. Tetra-
hedron Lett. 1986, 27, 2463. (q) Marco, J. L.; Royer, J.; Husson, H.-P.
Tetrahedron Lett. 1985, 26, 3567. (r) Enders, D.; Lotter, H.; Maigrot,
N.; Mazaleyrat, J.-P.; Welvart, Z. Nouv. J. Chem. 1984, 8, 747.
(16) Hoz, S.; Aurbach, D. J. Am. Chem. Soc. 1980, 102, 2340.
(19) (a) Thibonnet, J.; Vu, V. A.; Berillon, L.; Knochel, P. Tetrahedron
2002, 58, 4787. (b) Thibonnet, J.; Knochel, P. Tetrahedron Lett. 2000,
41, 3319.
(20) (a) Orsini, F. Synthesis 1985, 500. See also: (b) Goasdoue, N.;
Gaudemar, M. J. Organomet. Chem. 1972, 39, 17.
(21) (a) Naota, T.; Tannna, A.; Murahashi, S.-I. Chem. Commun.
2001, 63. (b) Naota, T.; Tannna, A.; Murahashi, S.-I. J. Am. Chem.
Soc. 2000, 122, 2960. For an analogous interconversion of palladium
complexes see: Kujime, M.; Hikichi, S.; Akita, M. Organometallics
2001, 20, 4049.
(22) Fleming, F. F.; Shook, B. C. J. Org. Chem. 2002, 67, 2885.
(23) Trost, B. M.; Florez, J.; Jebaratnam, D. J. J. Am. Chem. Soc.
1987, 109, 613.
(24) (a) Caron, S.; Vazquez, E.; Wojcik, J. M. J. Am. Chem. Soc. 2000,
122, 712. (b) Leung, C.-S.; Rowlands, M. G.; Jarman, M.; Foster, A.
B.; Griggs, L. J.; Wilman, D. E. V. J. Med. Chem. 1987, 30, 1550.
(25) For a preliminary communication see: Fleming, F. F.; Zhang,
Z.; Knochel, P. Org. Lett. 2004, 6, 501.
J. Org. Chem, Vol. 70, No. 6, 2005 2201