Inorg. Chem. 2003, 42, 4253−4255
Luminescent Zn and Pd Tetranaphthaloporphyrins
Vladimir V. Rozhkov, Mazdak Khajehpour, and Sergei A. Vinogradov*
Department of Biochemistry and Biophysics, UniVersity of PennsylVania,
Philadelphia, PennsylVania 19104
Received March 9, 2003
Zn and Pd complexes of meso-tetraphenyltetranaphthaloporphyrins
(Ph4TNP) exhibit strong infrared absorption bands and luminesce
hand, are studied only minimally,5 although their synthesis
has also been recently improved.6 In this work, we report
on Zn and Pd tetraphenyltetra[2,3]naphthaloporphyrins
(Ph4TNPs), which possess remarkably red-shifted absorption
Q-bands and exhibit considerable room temperature emission,
suggesting applications in PDT and biological oxygen
sensing by phosphorescence quenching.
The symmetrical tetraphenyltetra[2,3]naphthaloporphyrins
(MPh4TNPs; M ) Zn (1), Pd (2)) studied in this work are
shown in Scheme 1 together with the homologous tetraphen-
yltetrabenzoporphyrin (MPh4TBP).
Synthesis of Ar4TNPs was originally proposed by
Kopranenkov et al.7 It was based on the template condensa-
tion of 2,3-naphthalenedicarboximide with phenylacetic acids
in the presence of Zn salts. A much improved higher yield
synthesis of Ar4TNPs has been recently developed by Ono
et al.,6 allowing for the introduction of substituents in the
meso-phenyl rings, but requiring rather elaborate synthesis
of the precursor compounds. In this work, we followed the
older method, which has an advantage of a simpler single-
in solutions at room temperature. S1 f S0 fluorescence (λmax
)
732 nm, φ ) 5.3%) is the predominant emission in the case of
ZnPh4TNP (1). This emission is in part due to the delayed
fluorescence (φ ) 1.1%). Phosphorescence (T1 f S0) of 1 (λmax
) 973 nm) is very weak (φ ) 0.04%) and occurs with lifetime of
about 440 µs in deoxygenated DMF. In the case of PdPh4TNP
(2), almost no S1 f S0 fluorescence could be observed, while
the main emission detected was T1 f S0 phosphorescence (λmax
) 938 nm). The phosphorescence of 2 occurs with lifetime of
about 65 µs and (φ)6.5%) in deoxygenated DMF solution.
Metalloporphyrins 1 and 2 are promising near infrared dyes
biomedical applications.
Interest in porphyrins fused with external aromatic rings
has been steadily increasing in the past several years.1
Symmetrically extended porphyrins, such as tetrabenzopor-
phyrins (TBPs), exhibit particularly red-shifted absorption
bands and strong infrared luminescence and possess interest-
ing nonlinear optical properties, suggesting applications in
biomedicine2 and various branches of optical technology.3
meso-Tetraarylated tetrabenzoporphyrins (Ar4TBPs) and tet-
ranaphthaloporphyrins (Ar4TNPs) have an advantage of
increased solubility and relative ease of derivatization.
Considerable progress has been achieved lately in the
synthesis of functionalized Ar4TBPs,4 and some of their
applications have been described.2b-f,3 Ar4TNPs, on the other
(3) (a) Brunel, M.; Chaput, F.; Vinogradov, S. A.; Campagne, B.; Canva,
M.; Boilot, J. P. Chem. Phys. 1997, 218, 301-307. (b) Chen, P. L.;
Tomov, I. V.; Dvornikov, A. S.; Nakashima, M.; Roach, J. F.; Alabran,
D. M.; Rentzepis, P. M. J. Phys. Chem. 1996, 100, 17507-17512.
(c) Ono, N.; Ito, S.; Wu, C. H.; Chen, C. H.; Wen, T. C. Chem. Phys.
2000, 262, 467-473. (d) Srinivas, N.; Rao, S. V.; Rao, D.; Kimball,
B. K.; Nakashima, M.; Decristofano, B. S.; Rao, D. N. J Porphyrins
Phthalocyanins 2001, 5, 549-554. (e) Ohkuma, S.; Yamashita, T. J.
Photopolym. Sci. Technol. 2002, 15, 23-27. (f) Karotki, A.; Drobizhev,
M.; Kruk, M.; Spangler, C.; Nickel, E.; Mamardashvili, N.; Rebane,
A. J Opt. Soc. Am. B 2003, 20, 321-332.
(4) (a) Vicente, M. G. H.; Tome, A. C.; Walter, A.; Cavaleiro, J. A. S.
Tetrahedron Lett. 1997, 38, 3639-3642. (b) Ito, S.; Murashima, T.;
Uno, H.; Ono, N. Chem. Commun. 1998, 1661-1662. (c) Ito, S.; Ochi,
N.; Murashima, T.; Uno, H.; Ono, N. Heterocycles 2000, 52, 399-
411. (d) Ito, S.; Uno, H.; Murashima, T.; Ono, N. Tetrahedron Lett.
2001, 42, 45-47. (e) Finikova, O.; Cheprakov, A.; Beletskaya, I.;
Vinogradov, S. Chem. Commun. 2001, 261-262.
(5) (a) Dashkevich, S. N.; Kaliya, O. L.; Kopranenkov, V. N.; Luk’janets,
E. A. Zh. Prikl. Spektrosk. 1987, 47, 144-148. (b) Sapunov, U. V.;
Soloviev, K. N.; Kopranenkov, V. N.; Dashkevich, S. N. Teor. Eksp.
Khim. 1991, 27, 105-108. (c) Kobayashi, N.; Nevin, W. A.;
Mizunuma, S.; Awaji, H.; Yamaguchi, M. Chem. Phys. Lett. 1993,
205, 51-54. (d) Roitman, L.; Ehrenberg, B.; Kobayashi, N. J.
Photochem. Photobiol., A 1994, 77, 23-28. (e) Vinogradov, S. A.;
Wilson, D. F. AdV. Exp. Med. Biol. 1997, 411, 597-603.
(1) For review see: (a) Lash, T. D. Synthesis of Novel Porphyrinoid
Chromophores. In The Porphyrin Handbook; Kadish, K. M., Smith,
K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Chapter
10. (b) Senge, M. O. Highly Substituted Porphyrins. In The Porphyrin
Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic
Press: New York, 2000; Chapter 6.
(2) (a) Lavi, A.; Johnson, F. M.; Ehrenberg, B. Chem. Phys. Lett. 1994,
231, 144-150. (b) Vinogradov, S. A.; Wilson, D. F. J. Chem. Soc.,
Perkin Trans. 2 1994, 103-111. (c) Vinogradov, S. A.; Lo, L.-W.;
Jenkins, W. T.; Evans, S. M.; Koch, C.; Wilson, D. F. Biophys. J.
1996, 70, 1609-1617. (d) Friedberg, J. S.; Skema, C.; Baum, E. D.;
Burdick, J.; Vinogradov, S. A.; Wilson, D. F.; Horan, A. D.;
Nachamkin, I. J. Antimicrob. Chemother. 2001, 48, 105-107. (e)
Finikova, O.; Galkin, A.; Rozhkov, V.; Cordero, M.; Ha¨gerha¨ll, C.;
Vinogradov, S. J. Am. Chem. Soc. 2003, 125, 4882-4893. (f) Rietveld,
I. B.; Kim, E.; Vinogradov, S. A. Tetrahedron 2003, 59, 3821-3831.
(6) Ito, S.; Ochi, N.; Uno, H.; Murashima, T.; Ono, N. Chem. Commun.
2000, 893-894.
(7) Kopranenkov, V. N.; Vorotnikov, A. M.; Dashkevich, S. N.; Luk’yanets,
E. A. Zh. Obshch. Khim. 1985, 803-809.
10.1021/ic034257k CCC: $25.00 © 2003 American Chemical Society
Published on Web 06/07/2003
Inorganic Chemistry, Vol. 42, No. 14, 2003 4253