4
Tetrahedron
alcohol 3-phenylpropanol gave 8a 69% yield, but the reaction
Supplementary Material
failed with the very hindered alcohol t-amyl alcohol (8b), and
gave 41% yield of phosphinamide 8c when trapping with
diethylamine.
Supplementary data associated with this article can be found,
in the online version, at
References and notes
(1) DeFrank, J. J. In Applications of Enzyme Biotechnology; Kelly,
J. W., Baldwin, T. O., Eds.; Plenum: New York, 1991; pp 165–180.
(2) Saunders, B. C.; Stacey, G. J., J. Chem. Soc. 1948, 695.
(3) (a) Saunders, B. C. Some Aspects of the Chemistry and Toxic
Action of Organic Compounds Containing Phosphorus and Fluorine;
Cambridge University Press: Cambridge, 1957; (b) Colovic, M. B.;
Krstic, D. Z.; Lazarevic-Pasti, T. D.; Bondzic, A. M.; Vasic, V. M.,
Curr. Neuropharmacol. 2013, 11, 315; (c) Bartlett, P. A.; Lamden,
L. A., Bioorg. Chem. 1986, 14, 356.
(4) (a) Engel, R., Chem. Rev. 1977, 77, 349; (b) Camps, F.; Coll, J.;
Fabrias, G.; Guerrero, A., Tetrahedron 1984, 40, 2871.
(5) McCombie, H.; Saunders, B. C.; Stacey, G. J., J. Chem. Soc. Res.
1945, 380.
(6) Atherton, F. R.; Howard, H. T.; Todd, A. R., J. Chem. Soc. Res.
1948, 1106.
(7) Smith, T. D., J. Chem. Soc. 1962, 1122.
(8) (a) Chawalinski, S.; Rypinska, W., Roczniki Chem. 1957, 31,
539; (b) Shakya, P. D.; Dubey, D. K.; Pardasani, D.; Palit, M.;
Gupta, A. K., J. Chem. Res. 2005, 2005, 821; (c) Kumar, V.;
Kaushik, M. P., Chem. Lett. 2006, 35, 312.
(9) (a) Acharya, J.; Gupta, A. K.; Shakya, P. D.; Kaushik, M. P.,
Tetrahedron Lett. 2005, 46, 5293; (b) Donyavi, A.; Kazemi, F.,
Synthesis 2018, 50, 170.
We were intrigued about why the diaryl phosphinic acids (5)
were not significant byproducts in the tandem chlorination/
trapping reactions. Our observation of phosphoric chloride
esterification being significantly more rapid than that of the
analogous fluorides suggested that were hydrolysis due to
residual water, these products should have been forming. A 31P
NMR control experiment was carried out with slow-reacting
phosphine oxide 3f, and while its consumption was complete
within 15 minutes, little-to-no phosphinic acid was observed over
the course of 150 minutes (See Supporting Information). As the
same care and attention was given to both the chlorination and
fluorination reactions, the occurrence of hydrolysis products 5 in
the fluorination reactions remains unclear. Mechanistically, we
envision these reactions initiating by attack of the phosphine on
the electrophilic iodanes 1 or 2, giving phosphonium adduct A
(Scheme 3). Subsequent attack by the expelled halide on the
phosphonium gives B, whose deprotonation results in the
phosphoric halides. These could then be isolated as phosphoric
fluorides (C, X = F), or intercepted with external nucleophiles
(C, X = F or Cl) to give phosphinate or phosphinamide products
7 or 8.
(10) Goldwhite, H.; Saunders, B. C., J. Chem. Soc. 1955, 3564.
(11) Acharya, J.; Gupta, A. K.; Pardasani, D.; Dubey, D. K.;
Kaushik, M. P., Synth. Commun. 2008, 38, 3760.
(12) Gupta, A. K.; Acharya, J.; Pardasani, D.; Dubey, D. K.,
Tetrahedron Lett. 2008, 49, 2232.
(13) Purohit, A. K.; Pardasani, D.; Kumar, A.; Goud, D. R.; Jain, R.;
Dubey, D. K., Tetrahedron Lett. 2015, 56, 4593.
(14) Lermontov, S. A.; Popov, A. V.; Zavorin, S. I.; Sukhojenko, I.
I.; Kuryleva, N. V.; Martynov, I. V.; Zefirov, N. S.; Stang, P., J.
Fluorine Chem. 1994, 66, 233.
(15) Chen, Q.; Zeng, J.; Yan, X.; Huang, Y.; Wen, C.; Liu, X.;
Zhang, K., J. Org. Chem. 2016, 81, 10043.
(16) Liu, N.; Mao, L.-L.; Yang, B.; Yang, S.-D., Chem. Commun.
2014, 50, 10879.
(17) (a) Zhou, T.; Chen, Z.-C., Synth. Commun. 2001, 31, 3289; (b)
Xu, J.; Zhang, P.; Gao, Y.; Chen, Y.; Tang, G.; Zhao, Y., J. Org.
Chem. 2013, 78, 8176.
(18) (a) Zhang, J.-L.; Chen, Z.-C., Synth. Commun. 1998, 28, 175;
(b) Chen, C. C.; Waser, J., Chem. Commun. 2014, 50, 12923.
(19) Thielges, S.; Bisseret, P.; Eustache, J., Org. Lett. 2005, 7, 681.
(20) Eisenberger, P.; Kieltsch, I.; Armanino, N.; Togni, A., Chem.
Commun. 2008, 1575.
Scheme 3. Proposed mechanism of the oxidative
halogenation reaction.
In conclusion, we have developed a mild and efficient
synthesis of diaryl- and dialkylphosphoric fluorides and chlorides
from secondary phosphine oxides. The hypervalent iodine
reagents TolIF2 (1) and PhICl2 (2) served as both oxidants and
sources of chloride and fluoride ions, which resulted in a
chemoselective and operationally-simple process. Yields of the
phosphoric fluorides were variable due to the formation of
phosphinic acid byproducts; however, this could be overcome by
trapping the intermediates with external nucleophiles.
(21) Murphy, G. K.; Racicot, L.; Carle, M. S., Asian J. Org. Chem.
2018, 0, 10.1002/ajoc.201800058.
(22) (a) Zhdankin, V., Hypervalent Iodine Chemistry: Preparation,
Structure, and Synthetic Applications of Polyvalent Iodine
Compounds. John Wiley & Sons: 2013; p 468; (b) Stang, P. J.;
Zhdankin, V. V., Chem. Rev. 1996, 96, 1123; (c) Zhdankin, V. V.;
Stang, P. J., Chem. Rev. 2002, 102, 2523; (d) Zhdankin, V. V.;
Stang, P. J., Chem. Rev. 2008, 108, 5299; (e) Yoshimura, A.;
Zhdankin, V. V., Chem. Rev. 2016, 116, 3328; (f) Wirth, T.,
Hypervalent Iodine Chemistry: Modern Developments in Organic
Synthesis. Springer Berlin Heidelberg: Berlin, 2003.
Acknowledgments
This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada, the
University of Waterloo and the Early Researcher Award from the
Province of Ontario.
(23) (a) Carle, M. S.; Shimokura, G. K.; Murphy, G. K., Eur. J. Org.
Chem. 2016, 3930; (b) Eljo, J.; Carle, M. S.; Murphy, G. K., Synlett
2017, 28, 2871.