Organic Letters
Letter
tetrasubstituted alkenyl-B(pin), 2% of the allyl-B(pin), and 46:54 er
for the first isomer (>98% conv, 47% yield, 22:76:2 and 48:52 er with
6b).
(11) Related B(pin)-substituted allylsilanes have been accessed by
Pd-catalyzed silaborations of monosubstituted allenes. See: Ohmura,
T.; Taniguchi, H.; Suginome, M. J. Am. Chem. Soc. 2006, 128, 13682.
(12) For conversion of C−B(pin) into C−Br bonds, see: (a) Murphy,
J. M.; Liao, X.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 15434. (b)
Reference 2.
afford 1,4-diene 15 in 62% yield with 98% SN2′ selectivity and
in 96:4 dr (>98% stereoselectivity). Cross-coupling with S-14
gave anti isomer 16 with similar site selectivity and efficiency
(i.e., nearly complete catalyst control); here, 6d proved to be
the more effective ligand. By comparison, when an achiral
NHC−Cu complex, such as that derived from 17, was used, site
selectivity (76:24 SN2′:SN2) and stereoselectivity (80:20 dr)
were substantially diminished.
Development of other catalytic proto-boryl additions and
further mechanistic investigations are in progress.
(13) For the catalytic enantioselective synthesis of acyclic α,α-
disubstituted ketones, see: Pd-based catalysts: (a) Chen, J.-P.; Ding,
C.-H.; Liu, W.; Hou, X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2010, 132,
15493 and references cited therein. Ni-based catalysts: (b) Cherney,
A. H.; Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135,
7442 and references cited therein.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and spectral data for products. This
material is available free of charge via the Internet at http://
(14) For enzyme-catalyzed enantioselective synthesis of 2-aryl-
substituted butanones, see: Rodríguez, C.; de Gonzalo, G.; Pazmino,
̃
D. E. T.; Fraaije, M. W.; Gotor, V. Tetrahedron: Asymmetry 2009, 20,
1168.
(15) For a related dihydroxylation process, see: Le, H.; Kyne, R. E.;
Brozek, L. A.; Morken, J. P. Org. Lett. 2013, 15, 1432.
(16) For recent catalytic enantioselective synthesis of α,α-
disubstituted carboxylic acids, see: (a) Bigot, A.; Williamson, A. E.;
Gaunt, M. J. J. Am. Chem. Soc. 2011, 133, 13778. (b) Harvey, J. S.;
Simonovich, S. P.; Jamison, C. R.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2011, 133, 13782. (c) Huang, Z.; Liu, Z.; Zhou, J. J. Am. Chem.
Soc. 2011, 133, 15882.
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
†H.J. and B.J. contributed equally.
Notes
(17) For catalytic enantioselective allylic substitutions involving
alkenyl−B(pin) compounds, see: (a) Shintani, R.; Takatsu, K.; Takeda,
M.; Hayashi, T. Angew. Chem., Int. Ed. 2011, 50, 8656. (b) Gao, F.;
Carr, J. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2012, 51, 6613.
(c) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2013,
135, 994. (d) Gao, F.; Carr, J. L.; Hoveyda, A. H. J. Am. Chem. Soc.
2014, 136, 2149.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by the NSF (CHE-136273) and
the NIH (GM-47480).
(18) Wang, H.-Y.; Anderson, L. L. Org. Lett. 2013, 15, 3362.
REFERENCES
■
(1) Yus, M.; Gonzalez-Gomez, J. C.; Foubelo, F. Chem. Rev. 2013,
113, 5595.
(2) For recent reviews on enantioselective protonations, see:
(a) Blanchet, J.; Baudoux, J.; Amere, M.; Lasne, M.-C.; Rouden, J.
Eur. J. Org. Chem. 2008, 5493. (b) Mohr, J. T.; Hong, A. Y.; Stoltz, B.
M. Nat. Chem. 2009, 1, 359. For a recent relevant report, see:
(c) Cheon, C. H.; Kanno, O.; Toste, F. D. J. Am. Chem. Soc. 2011, 133,
13248.
(3) Nishimura, T.; Hirabayashi, S.; Yasuhara, Y.; Hayashi, T. J. Am.
Chem. Soc. 2006, 128, 2556. (b) Sawano, T.; Ou, K.; Nishimura, T.;
Hayashi, T. J. Org. Chem. 2013, 78, 8986.
(4) (a) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160.
(b) Lee, Y.; Jang, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131,
18234. (c) Coberan, R.; Mszar, N. M.; Hoveyda, A. H. Angew. Chem.,
́
Int. Ed. 2011, 50, 7079. (d) Meng, F.; Jang, H.; Hoveyda, A. H.
Chem.Eur. J. 2013, 19, 3204. See also: (e) Matsuda, N.; Hirano, K.;
Satoh, T.; Miura, M. J. Am. Chem. Soc. 2013, 135, 4934. (f) Meng, F.;
Haeffner, J.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 11304.
(5) (a) Meng, F.; Jung, B.; Haeffner, F.; Hoveyda, A. H. Org. Lett.
2013, 15, 1414. For related studies, see: (b) Yuan, W.; Ma, S. Adv.
Synth. Catal. 2012, 354, 1867. (c) Semba, K.; Shinomiya, M.; Fujihara,
T.; Terao, J.; Tsuji, Y. Chem.Eur. J. 2013, 19, 7125.
(6) Boronic Acids: Preparation and Applications in Organic Synthesis,
Medicine and Materials, Vol. 2; Hall, D. G., Ed.; Wiley-VCH:
Weinheim, Germany, 2011.
(7) For a related catalytic protocol involving Ni(acac)2 and Grignard
reagents, see: Li, Q.; Gau, H. Synlett 2012, 23, 747.
(8) Meng, F.; Jang, H.; Jung, B.; Hoveyda, A. H. Angew. Chem., Int.
Ed. 2013, 52, 5046.
(9) See the Supporting Information for additional details.
(10) Reactions with allenes that contain two alkyl groups are less
efficient and proceed with low site selectivity and enantioselectivity.
For example, reaction of Me- and Cy-substituted allene proceeds to
66% conversion (41% yield), affording a 57:41 ratio of di-/
D
dx.doi.org/10.1021/ol5022417 | Org. Lett. XXXX, XXX, XXX−XXX