2694
X.-T. Zhou et al. / Tetrahedron Letters 48 (2007) 2691–2695
Mn(TPP) (0.1 ppm)
O
CH2Cl2 (50 mL), isobutyraldehyde (0.1 mol), O2 (1 atm), 10 h, r.t.
20 mmol
isolated yield: 90%
TON: 731,470,480
Scheme 2. Large scale epoxidation of cyclohexene.
When the amount of manganese meso-tetraphenyl-
porphyrin catalyst was 2.5 · 10À8 mmol, the cyclo-
hexene oxide could be obtained with the isolated yield
of 90%. It should be mentioned that the turnover
number of the present catalyst could reach
731,470,480. Since commonly, TOF is used to express
the catalytic efficiency of enzyme with the definition as
converted substrate (mol) per enzyme (mol) per minute.
The TOF of most enzymes is about 1000 minÀ1 or more.
For example, the TOF of catalase is 6 · 106 minÀ1, and
the TOF of b-galactosidase is 1.25 · 104 minÀ1. In the
present manganese meso-tetraphenylporphyrin cata-
New Century Excellent Talents in University (NCET)
for the financial support.
References and notes
1. Meunier, B. Biomimetic Oxidations Mediated by Metal
Complexes; Imperial College Press: London, 2000.
2. (a) Groves, J. T.; Nemo, T. E. J. Am. Chem. Soc. 1983,
105, 5786–5791; (b) Dolphin, D.; Traylor, T. G.; Xie, L.
Y. Acc. Chem. Res. 1997, 30, 251–259; (c) do Nascimento,
E.; Silva, G. D.; Caetano, F. A.; Fernandez, M. A. M.; da
Silva, D. C.; de Carvalho, M. E. M. D.; Pernaut, J. M.;
Reboucas, J. S.; Idemori, Y. M. J. Inorg. Biochem. 2005,
99, 1193–1204.
lyzed system, the TOF reaches up to 1.2 · 106 minÀ1
,
which is the range for enzyme activity.
3. (a) Gross, Z.; Ini, S. J. Org. Chem. 1997, 62, 5514–5521;
(b) de Sousa, A. N.; de Carvalho, M. E. M. D.; Idemori,
Y. M. J. Mol. Catal. A 2001, 169, 1–10; (c) Li, Z.; Xia, C.
G.; Ji, M. Appl. Catal., A 2003, 252, 17–21.
5. Cyclohexene epoxidation catalyzed by Fe(III) and
Co(II) porphyrins
4. (a) Campestrini, S.; Tonellato, U. J. Mol. Catal. A 2001,
171, 37–42; (b) Gonsalves, A. M. D. R.; Serra, A. C. J.
Porphyrins Phthalocyanines 2000, 4, 598–603; (c) Nam,
W.; Oh, S.-Y.; Sun, Y. J.; Kim, J.; Kim, W.-K.; Woo, S.
K.; Shin, W. J. Org. Chem. 2003, 68, 7903–7906.
5. (a) Haber, J.; Iwanejko, R.; Poltowicz, J.; Battioni, P.;
Mansuy, D. J. Mol. Catal. A 2000, 152, 111–115; (b)
Haber, J.; Iwanejko, R.; Poltowicz, J.; Battioni, P.;
Mansuy, D. J. Mol. Catal. A 2000, 152, 117–120.
6. Mohajer, D.; Rezaeifard, A. Tetrahedron Lett. 2002, 43,
1881–1884.
Other simple structural metalloporphyrins, for example,
iron and cobalt porphyrins, have similar catalytic per-
formance for epoxidation of cyclohexene in the presence
of molecular oxygen and isobutyraldehyde. When using
1 ppm loading of iron meso-tetraphenylporphyrin chlo-
ride (Fe(TPP)Cl) or cobalt meso-tetraphenylporphyrin
Co(TPP)13 as catalyst in the epoxidation of cyclohexene
under the same reaction conditions, 95% and 89% yields
of cyclohexene oxide were obtained, respectively. These
results indicate that the metalloporphyrins are effective
catalysts for epoxidation of cyclohexene with ppm level
catalytic amount by using molecular oxygen as an
oxidant.
7. Mohajer, D.; Karimipour, G.; Bagherzadeh, M. New J.
Chem. 2004, 28, 740–747.
8. (a) Lyons, J. E.; Ellis, P. E. J. Catal. 1995, 155, 59–73; (b)
Haber, J.; Matachowski, L.; Pamin, K.; Poltowicz, J. J.
Mol. Catal. A 2000, 162, 105–109; (c) Guo, C. C.; Chu, M.
F.; Liu, Q.; Liu, Y.; Guo, D. C.; Liu, X. Q. Appl. Catal., A
2003, 246, 303–309; (d) Haber, J.; Matachowski, L.;
Pamin, K.; Poltowicz, J. J. Mol. Catal. A 2003, 198, 215–
221; (e) Ellis, S.; Kozhevnikov, I. V. J. Mol. Catal. A 2002,
187, 227–235.
9. Haber, J.; Mlodnicka, T.; Poltowicz, J. J. Mol. Catal.
1989, 54, 451–461.
10. Mandal, A. K.; Iqbal, J. Tetrahedron 1997, 53, 7641–
7648.
It has been shown that the steric and electronic proper-
ties of substituent on the porphyrin rings or axial ligands
could affect the catalytic performance of metalloporphy-
rins.19 Further studies on substituent and axial ligands
effects of catalytic activity for olefins epoxidation are
in progress.
In conclusion, simple structural manganese meso-tetra-
phenyl porphyrin has proven to be an excellent catalyst
for the epoxidation of olefins in the presence of mole-
cular oxygen and isobutylaldehyde. Under ambient
temperature and atmospheric pressure, the catalytic
system displays high activity and selectivity for olefins
epoxidation by using ppm level catalyst. The turnover
number of catalyst could reach up to 731,470,480.
11. (a) Yuan, Y.; Ji, H. B.; Chen, Y. X.; Han, Y.; Song, X. F.;
She, Y. B.; Zhong, R. G. Org. Process Res. Dev. 2004, 8,
418–420; (b) Song, X. F.; She, Y. B.; Ji, H. B.; Zhang, Y.
H. Org. Process Res. Dev. 2005, 9, 297–301.
12. meso-Tetraphenylporphyrin (TPP) was prepared accord-
ing to the known procedure, see: Alder, A. D.; Longo, F.
R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff,
L. J. Org. Chem. 1967, 32, 476.
13. Metalloporphyrins were prepared according to our previ-
ous works, see: Refs. 11a and 19a. The spectral and
analysis data of Mn(TPP). FAB: m/z 667. Anal. Calcd for
C44H28N4Mn: C, 79.08; H, 4.19; N, 8.39. Found: C, 79.26;
H, 4.05; N, 8.32. UV–vis (CH2Cl2) kmax: 424 nm (Soret
band), 545 nm (Q-band). IR: 1002 cmÀ1. The spectral and
analysis data of Fe(TPP)Cl. FAB: m/z 705. Anal. Calcd
Acknowledgements
The authors thank the National Natural Science Foun-
dation of China (No. 20576045) and the Program for