ACS Chemical Biology
Articles
reported as chemical shift (ppm) relative to solvent peak (1H NMR:
CDCl3 = 7.26 ppm, DMSO = 2.50 ppm; 13C NMR: CDCl3 = 77.16
ppm, DMSO = 39.52 ppm). Multiplicity is reported as follows: s =
singlet, d = doublet, t = triplet, q = quartet, bs = broad singlet, dd =
doublet of doublets, dt = doublet of triplets, td = triplet of doublets, tt
= triplet of triplets, ddd = doublet of doublet of doublets, ddt =
doublet of doublet of triplets, dtd = doublet of triplet of doublets,
quint = quintet, sext = sextet, hept = heptet. High resolution mass
spectrometry data were collected on a Waters Synapt G2-Si ESI MS, a
Micromass 70-VSE equipped with an EI/CI source, or a Waters Q-
TOF Ultima ESI and were collected at the University of Illinois at
Urbana−Champaign School of Chemical Sciences. Optical rotation
data were collected on a Rudolph Research Analytical AutoPol IV
Automatic Polarimeter outfitted with a TempTrolType 40T Polar-
imeter Sample Cell(5.0 × 50 mm). Chiral HPLC analysis was
performed on an Agilent 1100 series automated chromatographic
system outfitted with a ChiralPak IA-3 column (4.6 mm × 250 mm, 3
μm particle size) utilizing an isocratic mobile phase specific to each
compound. IR data were collected on a ThermoScientific Nicolet IS5
spectrometer outfitted with a ThermoFisher Scientific iD5 ATR.
Reaction mixtures were purified on a Biotage Isolera One automated
chromatography system outfitted with silica gel columns. Reversed-
phase high-performance liquid chromatography (HPLC) was
performed using Gilson model GX-241 Liquid Handler with Verity
4020 syringe pump, 159 UV−vis detector, and 321 solvent pump. A
Kinetex EVO C18 100 Å LC column (50 × 21.2 mm, 5 μm particle
size) was used, and the line was fitted with a Security Guard PREP
cartridge holder 21.2 mm with core−shell EVO C18 15 × 21.2 mm
cartridge and HPLC PREP column in-line filter (2.0 μm porosity,
21.2 mm). The mobile phase (acetonitrile:purified water) was
pumped at a flow rate of 15 mL/min for an initial hold of 1 min,
gradient for 4 min, and end hold for 1 min. Absorbance was measured
with a 159 UV−vis Gilson detector set at 320 nm to control fraction
collection. The fractions were concentrated using a Techne sample
concentrator.
REFERENCES
■
(1) Gerry, C. J., and Schreiber, S. L. (2018) Chemical probes and
drug leads from advances in synthetic planning and methodology.
Nat. Rev. Drug Discovery 17, 333−352.
(2) Pavlinov, I., Gerlach, E. M., and Aldrich, L. N. (2019) Next
generation diversity-oriented synthesis: a paradigm shift from
chemical diversity to biological diversity. Org. Biomol. Chem. 17,
1608−1623.
(3) Bray, M.-A., Singh, S., Han, H., Davis, C. T., Borgeson, B.,
Hartland, C., Kost-Alimova, M., Gustafsdottir, S. M., Gibson, C. C.,
and Carpenter, A. E. (2016) Cell Painting, a high-content image-
based assay for morphological profiling using multiplexed fluorescent
dyes. Nat. Protoc. 11, 1757−1774.
(4) Wawer, M. J., Li, K., Gustafsdottir, S. M., Ljosa, V., Bodycombe,
N. E., Marton, M. A., Sokolnicki, K. L., Bray, M.-A., Kemp, M. M.,
Winchester, E., Taylor, B., Grant, G. B., Hon, C. S.-Y., Duvall, J. R.,
̌
Wilson, J. A., Bittker, J. A., Dancík, V., Narayan, R., Subramanian, A.,
Winckler, W., Golub, T. R., Carpenter, A. E., Shamji, A. F., Schreiber,
S. L., and Clemons, P. A. (2014) Toward performance-diverse small-
molecule libraries for cell-based phenotypic screening using multi-
plexed high-dimensional profiling. Proc. Natl. Acad. Sci. U. S. A. 111,
10911−10916.
(5) Bates, S. E., Fojo, A. T., Weinstein, J. N., Myers, T. G., Alvarez,
M., Pauli, K. D., and Chabner, B. A. (1995) Molecular targets in the
National Cancer Institute drug screen. J. Cancer Res. Clin. Oncol. 121,
495−500.
(6) Schreiber, S. L., Shamji, A. F., Clemons, P. A., Hon, C., Koehler,
A. N., Munoz, B., Palmer, M., Stern, A. M., Wagner, B. K., Powers, S.,
Lowe, S. W., Guo, X., Krasnitz, A., Sawey, E. T., Sordella, R., Stein, L.,
Trotman, L. C., Califano, A., Dalla-Favera, R., Ferrando, A., Iavarone,
A., Pasqualucci, L., Silva, J., Stockwell, B. R., Hahn, W. C., Chin, L.,
DePinho, R. A., Boehm, J. S., Gopal, S., Huang, A., Root, D. E., Weir,
B. A., Gerhard, D. S., Zenklusen, J. C., Roth, M. G., White, M. A.,
Minna, J. D., MacMillan, J. B., and Posner, B. A. (2010) Towards
patient-based cancer therapeutics. Nat. Biotechnol. 28, 904−906.
(7) Woo, J. H., Shimoni, Y., Yang, W. S., Subramaniam, P., Iyer, A.,
ASSOCIATED CONTENT
* Supporting Information
■
́
Nicoletti, P., Rodríguez Martínez, M., Lopez, G., Mattioli, M.,
S
Realubit, R., Karan, C., Stockwell, B. R., Bansal, M., and Califano, A.
(2015) Elucidating Compound Mechanism of Action by Network
Perturbation Analysis. Cell 162, 441−451.
(8) Schulze, C. J., Bray, W. M., Woerhmann, M. H., Stuart, J., Lokey,
R. S., and Linington, R. G. (2013) Function-First” Lead Discovery:
Mode of Action Profiling of Natural Product Libraries Using Image-
Based Screening. Chem. Biol. 20, 285−295.
The Supporting Information is available free of charge on the
Crystallographic information file for Compound 9i-2
(9) Wang, C.-Y., Wang, B.-G., Brauers, G., Guan, H.-S., Proksch, P.,
and Ebel, R. (2002) Microsphaerones A and B, Two Novel γ-Pyrone
Derivatives from the Sponge-Derived Fungus Microsphaeropsis sp. J.
Nat. Prod. 65, 772−775.
AUTHOR INFORMATION
Corresponding Author
ORCID
■
(10) Stierle, A. A., Stierle, D. B., and Patacini, B. (2008) The
Berkeleyamides, Amides from the Acid Lake Fungus Penicillum
rubrum. J. Nat. Prod. 71, 856−860.
(11) Henrikson, J. C., Ellis, T. K., King, J. B., and Cichewicz, R. H.
(2011) Reappraising the Structures and Distribution of Metabolites
from Black Aspergilli Containing Uncommon 2-Benzyl-4H-pyran-4-
one and 2-Benzylpyridin-4(1H)-one Systems. J. Nat. Prod. 74, 1959−
1964.
(12) Wang, T.-Y., Li, Q., and Bi, K.-S. (2018) Bioactive flavonoids in
medicinal plants: Structure, activity and biological fate. Asian J. Pharm.
Sci. 13, 12−23.
(13) Raffa, D., Maggio, B., Raimondi, M. V., Plescia, F., and
Daidone, G. (2017) Recent discoveries of anticancer flavonoids. Eur.
J. Med. Chem. 142, 213−228.
(14) Shin, S. Y., Woo, Y., Hyun, J., Yong, Y., Koh, D., Lee, Y. H., and
Lim, Y. (2011) Relationship between the structures of flavonoids and
their NF-κB-dependent transcriptional activities. Bioorg. Med. Chem.
Lett. 21, 6036−6041.
(15) Ravishankar, D., Rajora, A. K., Greco, F., and Osborn, H. M. I.
(2013) Flavonoids as prospective compounds for anti-cancer therapy.
Int. J. Biochem. Cell Biol. 45, 2821−2831.
Author Contributions
‡E.M.G. and M.A.K. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Funding for these studies was provided by the UIC
Department of Chemistry. The authors acknowledge S.
DiMagno (UIC) for helpful discussions and L. Anderson
(UIC) for helpful discussions and usage of analytical
equipment. The authors thank D. Wink (UIC) for providing
X-ray crystallography data and analysis and F. Song (UIUC)
and H. Yao (UIUC) for providing high-resolution mass
spectrometry data.
I
ACS Chem. Biol. XXXX, XXX, XXX−XXX