10.1002/anie.201807393
Angewandte Chemie International Edition
COMMUNICATION
steric hindrance in an sp3 Grignard reagent was not tolerated, as
evidenced by the tert-butyl Grignard failing to furnish the desired
amide in an isolable quantity.[23]
Hesp, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2011, 133,
11430–11433; f) X. Geng, C. Wang, Org. Biomol. Chem. 2015, 13,
7619–7623.
[6]
[7]
For an overview of the problems associated with β–hydride elimination,
see: T.-Y. Luh, M.-K. Leung, K.-T. Wong, Chem. Rev. 2000, 100,
3187–3204.
In summary, a detailed assessment of the reaction of
isocyanates with Grignard reagents has led to the development
of a method in which, for the first time, a wide range of Grignard
reagents and isocyanates can be coupled effectively, using a
single, unified method. The use of flow chemistry imparts fast
mixing of both reagents, which is critical to the success of this
approach, but also confers upon this process an excellent
scalability and safety profile. Furthermore, this protocol avoids
the use of (stoichiometric) activating agents and provides an
efficient and productive transformation, demonstrating that
isocyanates are a valid surrogate synthon for the formation of
E. Serrano, R. Martin, Angew. Chem. Int. Ed. 2016, 55, 11207–11211;
Angew. Chem. 2016, 128, 11373–11377.
[8]
[9]
A. Correa, R. Martin, J. Am. Chem. Soc. 2014, 136, 7253–7256.
J.-C. Hsieh, C.-H. Cheng, Chem. Commun. 2005, 4554-4556.
[10] X. Wang, M. Nakajima, E. Serrano, R. Martin, J. Am. Chem. Soc. 2016,
138, 15531–15534.
[11] See also, amidations of isocyanates with carboxylic acids and
thioacids: a) K. Sasaki, D. Crich, Org. Lett. 2011, 13, 2256–2259; b) D.
Crich, K. Sasaki, Org. Lett. 2009, 11, 3514–3517.
[12] H. Yang, D. Huang, K.-H. Wang, C. Xu, T. Niu, Y. Hu, Tetrahedron
2013, 69, 2588–2593.
amide bonds, particularly when
a non-nucleophilic amine
fragment is required. We anticipate that this development will
facilitate the practicable employment of isocyanates as part of a
genuine alternative synthetic strategy towards amide bond-
forming reactions.
[13] For selected examples of direct reactions of stoichiometric
organometallics with isocyanates, see: a) V. Pace, L. Castoldi, W.
Holzer, Chem. Commun. 2013, 49, 8383–8385; b) D. Seyferth, R. C.
Hui, Tetrahedron Lett. 1984, 25, 5251–5254; c) K. A. Parker, E. G.
Gibbons, Tetrahedron Lett. 1975, 16, 981–984; d) E. Chorell, P. Das, F.
Almqvist, J. Org. Chem. 2007, 72, 4917–4924; e) A. V Lygin, A. de
Meijere, Org. Lett. 2009, 11, 389–392.
Acknowledgements
[14] a) G. Schäfer, C. Matthey, J. W. Bode, Angew. Chem. Int. Ed. 2012, 51,
9173–9175; Angew. Chem. 2012, 124, 9307-9310; See also, an
extension of this methodology to masked isocyanates: b) G. Schäfer, J.
W. Bode, Org. Lett. 2014, 16, 1526–1529.
The authors would like to thank the GlaxoSmithKline for financial
support to J.D.W. We would also like to thank Miss Sarah
Hunter, Mr. Andrew Payne, and Mr. Thomas Atherton for
support with engineering developments, reaction calorimetry,
and HRMS analysis, respectively.
[15] Formation of an analogous product was also observed in the iron-
catalyzed hydrophosphination of isocyanates: H. R. Sharpe, A. M. Geer,
W. Lewis, A. J. Blake, D. L. Kays, Angew. Chem. Int. Ed. 2017, 56,
4845-4848; Angew. Chem. 2017, 129, 4923-4926.
[16] For details, see section 3.1 in the supporting information.
[17] For selected applications of Grignard and other main group
organometallic reagents in flow, see: a) L. Huck, A. de la Hoz, A. Diaz-
Ortiz, J. Alcázar, Org. Lett. 2017, 19, 3747-3750; b) M. E. Kopach, K. P.
Cole, P. M. Pollock, M. D. Johnson, T. M. Braden, L. P. Webster, J.
McClary Groh, A. D. McFarland, J. P. Schafer, J. J. Adler, M.
Rosemeyer, Org. Process Res. Dev. 2016, 20, 1581–1592; c) E. Riva,
S. Gagliardi, M. Martinelli, D. Passarella, D. Vigo, A. Rencurosi,
Tetrahedron 2010, 66, 3242–3247; d) T. Brodmann, P. Koos, A.
Metzger, P. Knochel, S. V. Ley, Org. Process Res. Dev. 2012, 16,
1102–1113; (e) H. Wakami, J.-I. Yoshida, Org. Proc. Res. Dev. 2005, 9,
787–791; (f) D. L. Browne, M. Baumann, B. H. Harji, I. R. Baxendale, S.
V. Ley, Org. Lett. 2011, 13, 3312-3315; (g) P. R. D. Murray, D. L.
Browne, J. C. Pastre, C. Butters, D. Guthrie, S. V. Ley, Org. Process
Res. Dev. 2013, 17, 1192–1208; (h) J. A. Newby, D. W. Blaylock, P. M.
Witt, J. C. Pastre, M. J. Zacharova, S. V. Ley, D. M. Browne, Org.
Process Res. Dev. 2014, 18, 1211–1220; (i) M. R. Becker, M. A.
Ganiek, P. Knochel, Chem. Sci. 2015, 6, 6649-6653; (j) M. Ketels, M. A.
Ganiek, N. Weidmann, P. Knochel. Angew. Chem. Int. Ed. 2017, 56,
12770-12773; Angew. Chem. 2017, 129, 12944-12948.
Keywords: amides • C-C coupling • synthetic methods •
Grignard reaction • flow chemistry
[1]
For reviews on amide bond forming reactions, see: a) S. D. Roughley,
A. M. Jordan, J. Med. Chem. 2011, 54, 3451-3479; b) D. J. C.
Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Leazer, Jr.,
R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A.
Zaks, T. Y. Zhang, Green Chem. 2007, 9, 411-420; c) A. K. Ghose, V.
N. Viswanadhan, J. J. Wendoloski, J. Comb. Chem. 1999, 1, 55-68; d)
J. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Org. Biomol. Chem.
2006, 4, 2337-2347.
[2]
For selected examples of catalytic condensations of amines with
carboxylic acids, see: a) R. M. Al-Zoubi, O. Marion, D. G. Hall, Angew.
Chem. Int. Ed. 2008, 47, 2876-2879; Angew. Chem. 2008, 120, 2918-
2921; b) S. Fatemi, N. Gernigon, D. G. Hall, Green Chem. 2015, 17,
4016-4028; c) E. K. W. Tam, Rita, L. Y. Liu, A. Chen, Eur. J. Org. Chem.
2015, 1100-1107; d) H. Noda, M. Furutachi, Y. Asada, M. Shibasaki, N.
Kumagai, Nat. Chem. 2017, 9, 571-577; e) C. L. Allen, A. R. Chhatwal,
J. M. J. Williams, Chem. Commun. 2012, 48, 666-668.
[18] For reviews of organometallic reactions in flow, see: a) B. Gutmann, D.
Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54, 6688–6728;
Angew. Chem. 2015, 127, 6788-6832; b) M. Movsisyan, E. I. P.
Delbeke, J. K. E. T. Berton, C. Battilocchio, S. V. Ley, C. V. Stevens,
Chem. Soc. Rev. 2016, 45, 4892–4928; c) M. B. Plutschack, B. Pieber,
K. Gilmore, P. H. Seeberger, Chem. Rev. 2017, 117, 11796-11893; (e)
J.-I. Yoshida, A. Nagaki, T. Yamada, Chem. Eur. J. 2008, 14, 7450–
7459; (f) J.-I. Yoshida, Y. Takahashi, A. Nagaki, Chem. Commun. 2013,
49, 9896–9904.
[3]
[4]
For an in-depth review, see: R. M. de Figueiredo, J.-S. Suppo, J.-M.
Campagne, Chem. Rev. 2016, 116, 12029-12122.
a) T. T. S. Lew, D. S. W. Lim, Y. Zhang, Green Chem. 2015, 17, 5140-
5143; b) T. Miura, Y. Takahashi, M. Murakami, Chem. Commun. 2007,
3577-3579; c) E. Kianmehr, A. Rajabi, M. Ghanbari, Tetrahedron Lett.
2009, 50, 1687-1688; d) T. Koike, M. Takahashi, N. Arai, A. Mori, Chem.
Lett. 2004, 33, 1364-1365.
[5]
a) K. Muralirajan, K. Parthasarathy, C.-H. Cheng, Org. Lett. 2012, 14,
4262-4265; b) W. Liu, J. Bang, Y. Zhang, L. Ackermann, Angew. Chem.
Int. Ed. 2015, 54, 14137-14140; Angew. Chem. 2015, 127, 14343-
14346; c) J. Li, L. Ackermann, Angew. Chem. Int. Ed. 2015, 54, 8551–
8554; Angew. Chem. 2015, 127, 8671–8674; d) X.-Y. Shi, A. Renzetti,
S. Kundu, C.-J. Li, Adv. Synth. Catal. 2014, 356, 723–728; e) K. D.
[19] See section 2.3 in the supporting information for details.
[20] R. L.-Y. Bao, R. Zhao, L. Shi, Chem. Commun. 2015, 51, 6884–6900;
see also the additional detail within the supporting information.
[21] Investigation into the additive’s mechanism of action is currently
underway.
This article is protected by copyright. All rights reserved.