Paper
RSC Advances
alone was performed. As expected, LiCl can catalyze the redis-
tribution of ClCH2SiCl3/ClCH2SiH3, and introduction of BH3
can further accelerate the reaction obviously (Table 4, entry 2
and 3). Besides, almost identical results were achieved when the
same amount of LiBH4 or BH3/LiCl was used (Table 4, entry ꢀ3
and 4). The results indicate the similar catalytic effect of BH4
and BH3/LiCl, which can be well explained by the mechanism
proposed in Scheme 1.
3 (a) F. C. Whitmore, E. W. Pietrusza and L. H. Sommer, J. Am.
Chem. Soc., 1947, 69, 2108–2110; (b) A. Benouargha,
D. Boulahia, B. Boutevin, G. Caporiccio, F. Guida-
pietrasanta and A. Ratsimihety, Phosphorus, Sulfur, Silicon
Relat. Elem., 1996, 113, 79–87; (c) I. N. Jung, B. R. Yoo,
J. S. Han and W.-C. Lim, US Pat., US5965762A, 1999; (d)
W. Katsuyu and T. Hidenori, European Patent, EP2308884
(A1), 2011.
To get a better understanding of the possible mechanism in
Scheme 1, a DFT calculation at the B3LYP/6-311G (d, p)10 level of
theory was performed on the pentacoordinate intermediates
[ClCH2SiCl3–H–BH3]ꢀ (I) and [ClCH2SiCl3–H]ꢀ (II), which was
formed in the redistribution of ClCH2SiH3/ClCH2SiCl3 accord-
ing to the mechanism we proposed. The solvation effect of THF
was also considered with SMD model. The calculation result
shows that the apical Si–H bond in intermediate II lengthens
4 (a) P. A. McCusker and E. L. Reilly, J. Am. Chem. Soc., 1953,
75, 1583–1585; (b) H. E. Opitz, J. S. Peake and
W. H. Nebergall, J. Am. Chem. Soc., 1956, 78, 292–294; (c)
¨
¨
A. Gluer, J. I. Schweizer, U. S. Karaca, C. Wurtele,
M. Diefenbach, M. C. Holthausen and S. Schneider, Inorg.
Chem., 2018, 57, 13822–13828; (d) H. Takeshi, S. Hideki
and K. Fumihiko, US Pat., US4115426A, 1978.
5 (a) A. Kunai, T. Kawakami, E. Toyoda and M. Ishikawa,
Organometallics, 1992, 11(7), 2708–2711; (b) A. Kunai and
J. Ohshita, J. Organomet. Chem., 2003, 686(1), 3–15; (c)
W. Wang, Y. Tan, Z. Xie and Z. Zhang, J. Organomet. Chem.,
2014, 769, 29–33.
6 (a) K. Chulsky and R. Dobrovetsky, Angew. Chem., Int. Ed.,
2017, 56, 4744–4748; (b) A. G. Sturm, J. I. Schweizer,
L. Meyer, T. Santowski, N. Auner and M. C. Holthausen,
ꢀ
ꢀ
ꢀ
ꢀ
from l.47 A to 1.49 A, while it is elongated from 1.49 A to 1.65 A
in intermediate I. Calculation results on the other possible
pentacoordinate intermediates in the redistribution of ClCH2-
SiH3/ClCH2SiCl3 were similar. It may reect the role BH3 or Clꢀ
plays in the activation of Si–H bond in the chlorination process
as the mechanism we proposed.
In conclusion, we have demonstrated that borohydrides
catalyzed redistribution reaction between hydrosilane and
chlorosilane in different solvents efficiently. The new catalytic
redistribution system works for a broad scope of substituted
hydrosilane and chlorosilane substrates. The very simple and
mild reaction condition, the easily acquired catalysts, the rela-
tively fast reaction rate, and high conversion efficiency are all
advantages of the redistribution system. Further improvement
of the redistribution system is currently under investigation in
our laboratory.
Chem. - Eur. J., 2018, 24, 17796–17801.
ˇ
´
7 (a) H. Hagemann and R. Cerny, Dalton Trans., 2010, 39,
6006–6012; (b) H. C. Brown, Boranes in Organic Chemistry,
Cornell University Press, 2019, pp. 217–218.
8 (a) R. J. P. Corriu and C. Guerin, in Advances in
Organometallic Chemistry, eds. F. G. A. Stone and R. West,
Academic Press, 1982, vol. 20, pp. 265–312; (b)
R. J. P. Corriu and C. Guerin, J. Organomet. Chem., 1980,
198, 231–320.
9 (a) D. J. Parks and W. E. Piers, J. Am. Chem. Soc., 1996, 118,
9440–9441; (b) J. M. Blackwell, K. L. Foster, V. H. Beck and
W. E. Piers, J. Org. Chem., 1999, 64, 4887–4892.
Conflicts of interest
There are no conicts to declare.
10 (a) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley,
M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys.,
1982, 77, 3654–3665; (b) A. D. McLean and G. S. Chandler,
J. Chem. Phys., 1980, 72, 5639–5648; (c) T. Clark,
J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, J.
Comput. Chem., 1983, 4, 294–301; (d) R. Krishnan,
J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980,
Notes and references
1 (a) B. Arkles, in Kirk-Othmer Encyclopedia of Chemical
Technology, American Cancer Society, 2000; (b) R. M. Laine
and A. Sellinger, in The Chemistry of Organic Silicon
Compounds, John Wiley & Sons, Ltd, 2003, pp. 2245–2316;
(c) W. Xue, M. C. Kung and H. H. Kung, Chem. Commun.,
2005, 2164–2166; (d) M. N. Missaghi, C. M. Downing,
M. C. Kung and H. H. Kung, Organometallics, 2008, 27,
6364–6366.
´
72, 650–654; (e) G. W. Spitznagel, T. Clark, P. von Rague
Schleyer and W. J. Hehre, J. Comput. Chem., 1987, 8, 1109–
1116; (f) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and
M. J. Frisch, J. Phys. Chem., 1994, 98, 11623–11627.
2 (a) E. G. Rochow, J. Am. Chem. Soc., 1945, 67, 963–965; (b)
D. Seyferth, Organometallics, 2001, 20, 4978–4992.
This journal is © The Royal Society of Chemistry 2020
RSC Adv., 2020, 10, 17404–17407 | 17407