A. McAuley, Coord. Chem. Rev., 1981, 39, 77; K. Nag and
A. Chakravorty, Coord. Chem. Rev., 1980, 33, 87.
2 K. R. Dunbar, J.-S. Sun and A. Quilleve´re´, Inorg. Chem., 1994, 33, 3598
and references therein.
3 J. J. G. Moura, M. Teixeira and I. Moura, Pure Appl. Chem., 1989, 61,
915; R. Cammack, Adv. Inorg. Chem., 1988, 32, 297; D. W. Margerum,
Pure Appl. Chem., 1983, 55, 23.
4 C. A. Marganian, H. Vazir, N. Baidya, M. M. Olmstead and
P. K. Mascharak, J. Am. Chem. Soc., 1995, 117, 1584 and references
therein.
It can be concluded that the pentachlorophenyl group is a
ligand especially well suited to stabilising unusual oxidation
states, at least in the platinum-group metals.9,14 Studies aimed at
testing the reactivity of this unprecedented nickel(iii) compound
are in progress.
We thank the Direccio´n General de Ensen˜anza Superior
(Projects PB95-0003-CO2-01 and PB95-0792) for financial
support.
5 (a) L. A. van de Kuil, Y. S. J. Veldhuizen, D. M. Grove, J. W. Zwikker,
L. W. Jenneskens, W. Drenth, W. J. J. Smeets, A. L. Spek and G. van
Koten, J. Organomet. Chem., 1995, 488, 191; (b) D. M. Grove, G. van
Koten, P. Mul, R. Zoet, J. G. M. van der Linden, J. Legters,
J. E. J. Schmitz, N. W. Murrall and A. J. Welch, Inorg. Chem., 1988, 27,
2466; (c) D. M. Grove, G. van Koten, W. P. Mul, A. A. H. van der
Zeijden, J. Terheijden, M. C. Zoutberg and C. H. Stam, Organome-
tallics, 1986, 5, 322; (d) D. M. Grove, G. van Koten, R. Zoet,
N. W. Murrall and A. J. Welch, J. Am. Chem. Soc., 1983, 105, 1379.
6 R. Uso´n, J. Fornie´s, P. Espinet, R. Navarro, F. Mart´ınez and M. Toma´s,
J. Chem. Soc., Chem. Commun., 1977, 789.
7 C. Amatore and A. Jutand, Organometallics, 1988, 7, 2203; T. T. Tsou
and J. K. Kochi, J. Am. Chem. Soc., 1979, 101, 7547; 1978, 100, 1634;
M. Almemark and B. Åkermark, J. Chem. Soc., Chem. Commun., 1978,
66.
8 (a) R. Uso´n and J. Fornie´s, Adv. Organomet. Chem., 1988, 28, 219; (b)
E. Maslowsky Jr., Vibrational Spectra of Organometallic Compounds,
Wiley, New York, 1977, p. 437; (c) J. Casabo´, J. M. Coronas and
J. Sales, Inorg. Chim. Acta, 1974, 11, 5.
9 J. Fornie´s, B. Menjo´n, R. M. Sanz-Carrillo, M. Toma´s, N. G. Connelly,
J. G. Crossley and A. G. Orpen, J. Am. Chem. Soc., 1995, 117, 4295;
R. Uso´n, J. Fornie´s, M. Toma´s, B. Menjo´n, R. Bau, K. Su¨nkel and
E. Kuwabara, Organometallics, 1986, 5, 1576.
10 D. Xu, K. Miki, M. Tanaka, N. Kasai, N. Yasuoka and M. Wada,
J. Organomet. Chem., 1989, 371, 267; B. Longato, B. Corain,
R. Angeletti and G. Valle, Inorg. Chim. Acta, 1987, 130, 243; D. Xu,
K. Miki, Y. Kai, N. Kasai and M. Wada, J. Organomet. Chem., 1985,
287, 265; K. Miki, H. Taniguchi, Y. Kai, N. Kasai, K. Nishiwaki and
M. Wada, J. Chem. Soc., Chem. Commun., 1982, 1178.
11 A. Mart´ın and A. G. Orpen, J. Am. Chem. Soc., 1996, 118, 1464.
12 J. A. Aramburu and M. Moreno, J. Chem. Phys., 1983, 79, 4996.
13 T. J. Collins, T. R. Nichols and E. S. Uffelman, J. Am. Chem. Soc., 1991,
113, 4708; H.-J. Kru¨ger, G. Peng and R. H. Holm, Inorg. Chem., 1991,
30, 734; see also refs. 2, 5(b) and 5(d).
14 M. P. Garc´ıa, M. V. Jime´nez, L. A. Oro, F. J. Lahoz, M. C. Tiripicchio
and A. Tiripicchio, Organometallics, 1993, 12, 4660; M. P. Garc´ıa,
M. V. Jime´nez, L. A. Oro, F. J. Lahoz, J. M. Casas and P. J. Alonso,
Organometallics, 1993, 12, 3257; M. P. Garc´ıa, M. V. Jime´nez,
L. A. Oro, F. J. Lahoz and P. J. Alonso, Angew. Chem., Int. Ed. Engl.,
1992, 31, 1527.
Footnotes
† Experimental procedure: to a yellowish suspension of [NBu4]2[NiII-
(C6Cl5)4] 1 (0.5 g, 0.32 mmol) in CH2Cl2 (7 cm3) at 240 °C was added Cl2
dissolved in CCl4 (0.18 mmol). The system changed immediately to green
and, after addition of MeOH (20 cm3) at 280 °C, the resulting green solid
was filtered off in a low-temperature device, subsequently washed with cold
Et2O (3 3 10 cm3) and dried (2, 70% yield). Anal. Found: C 36.5, H 2.8, N
1.1; C40H36Cl20NNi requires: C 37.0, H 2.8, N 1.1%. IR(Nujol; cm21):
selected absorptions associated with the C6Cl5 groups:8 827vs (X-sensitive
vibr.), 675vs, 603s [n(Pt–C)] and 275m.
‡ The fate of the metal-containing fragment could not be determined so far
and hence we still do not know whether this reductive elimination process
takes place inter- or intra-molecularly.
§ The cyclic voltammogram of 1 at 100 mV s21 scan rate in 0.1 m NBu4PF6
shows Epa = 20.055 V and Epc = 20.168 V vs. SCE.
¶ Crystal data for 2·2Et2O: C48H56Cl20NNiO2, M = 1446.65, monoclinic,
space group C2/c (no. 15), a = 1987.3(2), b = 2167.8(1), c = 1487.2(1)
pm, b = 110.026(5)°, U = 6.031(2) nm3, Z = 4, F(000) = 2940,
Dc = 1.593 g cm23, l(Mo-Ka) = 71.073 pm, 344 parameters refined with
5300 reflections with I > 2s(I) to R = 0.0736, Rw = 0.1577. Atomic
coordinates, bond lengths and angles, and thermal parameters have been
deposited at the Cambridge Crystallographic Data Centre (CCDC). See
Information for Authors, Issue No. 1. Any request to the CCDC for this
material should quote the full literature citation and the reference number
182/365.
∑ EPR data were taken on a Varian E-112 spectrometer working in the
X-band. Measurements at liquid-nitrogen temperature (77.3 K) were taken
using a quartz immersion Dewar. The magnetic field was measured with a
Bruker ER035M gaussmeter. The diphenylpicrylhydrazyl resonance signal
[g = 2.0037(2)] was used to determine the microwave frequencies.
** Other contributions such as charge-transfer, covalency, etc. can modify
the principal g-values so as to make the crystal-field description inadequate.
In fact, either positive or negative g-shifts are observed for square-planar
low-spin d7 complexes.12
References
1 A. G. Lappin and A. McAuley, Adv. Inorg. Chem., 1988, 32, 241;
L. Sacconi, F. Mani and A. Bencini, in Comprehensive Coordination
Chemistry, ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty,
Pergamon, Oxford, 1987, vol. 5, ch. 50, p. 1; R. I. Haines and
Received, 11th November 1996; Com. 6/07668H
504
Chem. Commun., 1997