2484 Organometallics, Vol. 16, No. 12, 1997
Communications
Sch em e 1. Syn th esis of Allen ylid en e a n d Alk yn yl
Com p lexes
cm-1) and the typical chemical shift, δ, in the 13C NMR
spectrum of the RudC carbon nucleus at 287.33-289.79
ppm (2J CP ) 15.3-16.4 Hz).2a,2c
F igu r e 1. ORTEP drawing of 1. Selected bond distances
(Å) and angles (deg): Ru-C1, 1.92(1); Ru-C99, 1.83(1);
Ru-P, 2.349(3); Ru-C*, 1.93(1); C99-O99, 1.15(1); C1-
C2, 1.26(1); C2-C3, 1.35(2); C3-C81, 1.47(2); C3-C91,
1.48(2); C99-Ru-C1, 92.1(5); C99-Ru-P, 86.8(4); C1-
Ru-P, 92.5(3); O99-C99-Ru, 176.(1); C2-C1-Ru, 172.-
(1); C1-C2-C3, 176.(1); C2-C3-C81, 120.(1); C2-C3-
C91, 120.(1). C* ) centroid of the indenyl ring.
Under similar reaction conditions, [Ru(η5-1,2,3-
Me3C9H4)Br(CO)(PPh3)] also reacts with phenylacety-
lene but a mixture containing the corresponding vi-
nylidene and the π-bonded alkyne complexes is obtained.
31P{1H} NMR spectrum of the mixture confirms the
presence of both species. All attempts to isolate the
vinylidene species have failed.7 The formation of the
transient vinylidene complex is assessed by the addition
of potassium tert-butoxide to this mixture, which leads,
after deprotonation, to the alkynyl complex [Ru(-C≡C-
CPh)(η5-1,2,3-Me3C9H4)(CO)(PPh3)] (4) (75% yield).6
It is well-known that the electrophilicity of the CR and
electronic nature of the metal fragment.8 We have
shown2c that the indenyl group in the complex [Ru-
{dCdCdCPh2}(η5-C9H7)(PPh3)2]+ exhibits a steric in-
fluence on the CR atom. As a consequence of the
preferred cis conformation of the indenyl ring with
respect to the unsaturated carbene chain, the benzo ring
of the indenyl group is over the CR atom.9 In order to
get information on the preferred conformation of the
analogous 1,2,3-Me3C9H4 group and on the overall
protection of the CR atom, a single-crystal X-ray struc-
tural determination of complex 1 was carried out.10
The structure shows (Figure 1) the typical pseudo-
octahedral three-legged piano-stool geometry, with a
nearly linear allenylidene group coordinated to the
ruthenium atom. Bond distances in the allenylidene
C
atoms of the allenylidene group depends on the
γ
(5) The halide complexes [Ru(η5-1,2,3-Me3C9H4)BrLL′] (L ) CO, L′
) PPh3, PiPr3; L-L′ ) bis(diphenylphosphino)methane (dppm)) are
easily prepared in high yields from [Ru(η5-1,2,3-Me3C9H4)X(CO)2] by
substitution of one or two carbonyl groups with the appropriate
phosphine. Gamasa, M. P.; Gimeno, J .; Gonza´lez-Bernardo, C. Un-
published results.
(6) (a) Synthesis of allenylidene complexes 1-3. General proce-
dure: A mixture of [Ru(η5-1,2,3-Me3C9H4)BrLL′] (0.80 mmol) and
AgBF4 (0.88 mmol) in CH2Cl2 (70 mL) was stirred under nitrogen for
15 min at room temperature in the absence of light. After the AgBr
formed was filtered, HC≡CC(OH)Ph2 (2.4 mmol) was added to the
solution, whose color changed immediately from yellow to violet. The
mixture was stirred for 15 min, the solvent evaporated, and the solid
residue washed several times with diethyl ether. A violet solid was
obtained (yield: 65-85%). Spectroscopic data for complex 1. 31P{1H}
NMR (δ, ppm): 48.20 (s). 1H NMR (δ, ppm): 1.85 (s, 3H, Me), 2.04 (s,
(8) (a) The following allenylidene complexes add alcohols at CR. (i)
[Ru(dCdCdCR2)(η6-arene)Cl(PR′3)]+: Pilette, D.; Ouzzine, K.; Le
Bozec, H.; Dixneuf, P. H.; Rickard, C. E. F.; Roper, W. R. Organome-
tallics 1992, 11, 809. (ii) [Ru(dCdCdCPh2)(η5-C5H5)(CO)(PiPr3)]+:
Esteruelas, M. A.; Go´mez, A. V.; Lahoz, F. J .; Lo´pez, A. M.; On˜ate, E.;
Oro, L. A. Organometallics 1996, 15, 3423. (b) The allenylidene group
is stable toward methanol or ethanol in the following complexes. (i)
[Ru(dCdCdCPh2)(η5-C5H5)(PMe3)2]+: Selegue, J . P. Organometallics
4
3H, Me), 2.21 (d, 3H, J HP ) 1.0 Hz, Me), 6.78-7.84 (m, 29H, H-4-7,
PPh3, Ph). 13C{1H} NMR (δ, ppm): 9.42 (Me), 10.47 (Me), 11.05 (Me),
2
92.74 (d, J CP ) 4.3 Hz), 94.37 (C-1 and C-3), 108.47, 112.97, 115.74
(C-2, C-3a, and C-7a), 121.02, 123.45 (C-4,7 or C-5,6), 129.08-142.2
3
(m, PPh3, Ph, C-4,7 or C-5,6), 166.94 (Cγ), 183.62 (d, J CP ) 1.8 Hz,
2
2
Câ), 201.09 (d, J CP ) 17.0 Hz, CO), 289.29 (d, J CP ) 15.9 Hz, CR). (b)
Spectroscopic data of complexes 4 and 5. 4: 31P{1H} NMR (δ, ppm)
1982, 1, 217. (ii) [Ru(dCdCdCR2)(η5-C9H7)(PPh3)2]+ (R ) Ph, R2
)
C12H8; C12H8 ) 2,2′-biphenyldiyl): ref 2c. (iii) [Ru(dCdCdCPh2)Cl(NP3)]+
(NP3 ) N(CH2CH2PPh2)3): Wolinska, A.; Touchard, P. H.; Dixneuf, P.
H.; Romero, A. J . Organomet. Chem. 1991, 420, 217. (iv) [Ru-
(dCdCdCRR′) Cl(dppm)2]+ (R ) R′ ) Ph; R ) H, R′ ) Ph, p-PhCl,
p-PhOMe): Pirio, N.; Touchard, D.; Toupet, L.; Dixneuf, P. H. Orga-
nometallics 1995, 14, 4920. (v) [Ru(dCdCdCRR′)Cl2{κP-iPr2PCH2CO2-
Me}{κ2P,O-iPr2PCH2CO2Me}] (R ) Ph, R′ ) Ph, o-Tol): Werner, H.;
Stark, A.; Steinert, P.; Gru¨nwald, C.; Wolf, J . Chem. Ber. 1995, 128,
49.
54.77 (s). 1H NMR (δ, ppm): 1.53 (s, 3H, Me), 1.94 (d, 3H, J HP ) 1.7
4
Hz, Me), 2.04 (s, 3H, Me), 6.63 (m, 1H), 6.71 (m, 1H), 6.82 (m, 1H),
6.96-7.40 (m, 21H, H-4-7, PPh3, Ph). 13C{1H} NMR (δ, ppm): 8.59
2
(Me), 9.95 (Me), 11.16 (Me), 85.56, 86.23 (d, J CP ) 5.0 Hz, C-1 and
2
C-3), 105.24, 109.01, 110.50 (d, J CP ) 8.1 Hz, C-2, C-3a, and C-7a),
2
109.87 (d, J CP ) 25.0 Hz, CR), 121.78-134.82 (m, C-4-7, Câ, PPh3,
2
Ph), 207.25 (d, J CP ) 18.6 Hz, CO). 5: 31P{1H} NMR (δ, ppm) 44.76
(bs). 1H NMR (δ, ppm): 1.46 (s, 3H, Me), 1.76 (s, 3H, Me), 1.85 (s, 3H,
Me), 4.00 (m, 3H, OMe), 5.09 (s, 1H, sCHd), 6.56-7.70 (m, 29H, H-4-
7, PPh3, Ph). 13C{1H} NMR (δ, ppm): 8.95 (Me), 10.19 (Me), 10.53 (Me),
67.63 (OMe), 88.30 (C-1 and C-3), 106.03, 116.99 (C-2, C-3a, and C-7a),
119.10 (Ind), 124.25 (Ind), 127.89 (Ind), 125.62-139.77 (m, Ind, sCHd,
PPh3, Ph), 145.48 (dCPh2), 204.15 (d, 2J CP ) 15.3 Hz, CO), 298.58 (m,
CR). Ind ) C-4,5,6, or 7.
(9) EHMO calculations are in accordance with these preferred
conformations in the solid state. Reference 2c.
(10) Crystal data: [C46H38OPRu][BF4]; Mr ) 825.61; monoclinic;
space group P21/n; a ) 14.834(6) Å, b ) 17.893(5) Å, c ) 14.93(1) Å; â
) 95.89(7)°; V ) 3941(4) Å3; Z ) 4; Fcalcd ) 1.391 g cm-3; F(000) )
1688; µ ) 0.49 mm-1; violet crystal (0.13 × 0.36 × 0.23 mm); 7466
reflections measured, 6917 used in refinement; full-matrix least-
squares refinement on F2; the BF4- anion exhibited severe structural
disorder; final R1 ) 0.062 and wR2 ) 0.154 (both for I > 2σ(I)); the
(7) (a) A similar equilibrium has also been observed at room
temperature for the analogous ruthenium fragment [Ru(η5-C5H5)-
(CO)(PPh3)]+: Nombel, P.; Lugan, N.; Mathieu, R. J . Organomet. Chem.
1995, 503, C22. (b) η2-Alkyne complexes have been isolated: Lomprey,
J . R.; Selegue, J . P. J . Am. Chem. Soc. 1992, 114, 5518. (c) Studies on
the ready isomerization of [Fe(η5-C5H5)(CO)2(dCdCRR′)]+ in the
corresponding η2-alkyne [Fe(η5-C5H5)(CO)2(η2-RC≡CR′)]+ have been
reported: Bly, R. S.; Zhong, Z.; Kane, C.; Bly, R. K. Organometallics
1994, 13, 899.
function minimized was [∑w(Fo - Fc2)2/∑w(Fo2)2]1/2, w ) 1/[σ2(Fo2) +
2
(0.1015*P)2 + (6.92*P)] where P ) (Max(Fo2,0) + 2*Fc2)/3 with σ2 (Fo
)
2
from counting statistics; number of parameters refined 470; residual
electronic density less than 0.91 e Å-3; maximum parameter shift to
esd ratio 0.051; T ) 293 K; Enraf-Nonius CAD4 diffractometer; λ (Mo
KR) ) 0.710 73 Å, ω-2θ scan technique (2° < θ < 25°).