7312
40.0 (S+±CH2±arom), 43.1 (CH), 55.5 (methoxy), 57.7 (O±CH2±S+), 70.7 (Cq(Me)2), 76.01 (O±CH), 115.3 (CH
arom.), 117.9 (Cq arom.), 132.3 (CH arom.), 161.0 (Cq arom.); IR (CHCl3) 1040 cm^1 (C±S+).
6. Solladie-Cavallo, A.; Adib, A.; Schmitt, M.; Fischer, J.; Decyan, A. Tetrahedron: Asymmetry 1992, 3, 1597±1602.
7. trans-Epoxides 1a,2a,3a: 1H NMR spectra are identical to those described in the literature, cf. (a) Lindstrom,
U. M.; Somfai, P. Synthesis 1998, 1, 109±117. (b) Frohn, M.; Dalkiewicz, M.; Tu, Y.; Wang, Z. X.; Shi, Y. J. Org.
Chem. 1998, 63, 2948±2953. (c) Aggarwal, V. K.; Ford, J. G.; Fonquerna, S.; Adams, H.; Jones, R. V. H.;
Fieldhouse, R. J. Am. Chem. Soc. 1998, 120, 8328±8339.
8. The signals of the epoxide ring (d and dd at 3.75 and 3 ppm, respectively) and of the cyclopropane ring (ddd at
2.05 ppm) have been used for identi®cation of compound 11 (R1=R2=H), while the signals of the cyclopropane
ring (ddd at 2.65, 2.20 and 1.75 ppm) and of the aldehyde (d at 9.35 ppm) have been used in the case of 12
(R1=R2=H). Similarly, 13 (R1=H, R2=Ph) was identi®ed from the epoxide ring signal (d at 3.75 ppm), and 14
(R1=H, R2=Ph) from the cyclopropane ring signal (ddd at 2.5 ppm) and the aldehyde (d at 8.95 ppm).
9. Compound 1b-trans-(R,R): 1H NMR (400 MHz, CDCl3) ꢀ 3.38 (dd, 1H, 3J=2 Hz, 3J=7.5 Hz, epoxide ring), 3.74
3
3
2
(d, 1H, J=2 Hz, epoxide ring), 3.83 (s, 3H, OMe), 5.35 (dd, 1H, Jcis=10.5 Hz, J=0.5 Hz, CH vinyl), 5.55
3
2
3
3
3
(dd, 1H, Jtrans=16 Hz, J=0.5 Hz, CH vinyl), 5.75 (ddd, 1H, J=7.5 Hz, Jcis=10.5 Hz, Jtrans=16 Hz, CH
vinyl), 6.91 (ꢁd, 2H, arom.), 7.22 (ꢁd, 2H, arom.); 13C NMR (100 MHz, CDCl3) ꢀ 55.7 (methoxy), 60.5 (epoxide
ring), 63.1 (epoxide ring), 114.4 (CH arom.), 119.7 (CH2 vinyl), 127.2 (CH arom.), 129.4 (Cq arom.), 135.6 (CH
vinyl), 160.2 (Cq arom.). Compound 2b-trans-(R,R): H NMR (400 MHz, CDCl3) ꢀ 1.81 (bs, 6H, (CH3)2), 3.53
(dd, 1H, 3J=2 Hz, 3J=8.5 Hz, epoxide ring), 3.73 (d, 1H, 3J=2 Hz, epoxide ring), 3.83 (s, 3H, OMe), 5.02 (sept.
1
d, 1H, J=8.5 Hz, J=4J=4J=4J=4J=4J=1 Hz, CH vinyl), 6.91 (ꢁd, 2H, arom.), 7.24 (ꢁd, 2H, arom.); 13C
NMR (100 MHz, CDCl3) ꢀ 18.8 (CH3 vinyl), 26.3 (CH3 vinyl), 55.7 (methoxy), 60.1 (epoxide ring), 60.3 (epoxide
ring), 114.4 (CH arom.), 122.4 (Cq vinyl), 127.1 (CH arom.), 129.9 (Cq arom.), 140.8 (CH vinyl), 160.0 (Cq
3
4
25
25
D
arom.). Compound 3b-trans-(R,R): mp=100±102ꢀC; ꢁ +209 (c 1.0; CHCl3); ꢁ +266 (c 0.31; EtOH); 1H
D
3
3
NMR (200 MHz, CDCl3) ꢀ 3.52 (dd, 1H, J=2.5 Hz, J=7.5 Hz, epoxide ring), 3.84 (s, 3H, OMe), 3.85 (d, 1H,
3J=2.5 Hz, epoxide ring), 6.07 (dd, 1H, 3J=7.5 Hz, 3J=16 Hz, CH vinyl), 6.81 (d, 1H, 3J=16 Hz, CH vinyl), 6.90
(ꢁd, 2H, arom.), 7.2±7.45 (m, 7H, arom.); 13C NMR (100 MHz, CDCl3) ꢀ 55.7 (methoxy), 61.0 (epoxide ring),
63.3 (epoxide ring), 114.5 (CH arom.), 126.7 (CH arom.), 126.9 (CH), 127.2 (CH arom.), 128.5 (CH), 129.1 (CH
arom.), 129.4 (Cq arom.), 134.7 (CH), 136.6 (Cq arom.), 160.2 (Cq arom.).
10. The coupling constants (larger for the cis-isomer, ꢁ5 Hz, compared to the trans-isomer, ꢁ2 Hz) have been
determined on the signals of the epoxide ring protons and have been used to identify the cis-epoxides.
11. Aggarwal, V. K.; Calamai, S.; Ford, J. G. J. Chem. Soc., Perkin Trans. 1 1997, 5, 593±600.
1
12. Percentages of conversion were determined on solvent-free crude products by combining weights and H NMR.
13. Solladie-Cavallo, A.; Roje, M.; Isarno, T.; Sunjic, V.; Vinkovic, V. Eur. J. Org. Chem. 2000, 1077±1080. Oxathiane
is inert to reduction and nucleophilic opening of epoxides.
14. Analytical chiral columns: Chiralcel OJ, Chiralcel OB-H and Chiralpack AS (all 25 cmÂ4.6 mm I.D., from Daicel,
Japan) were used. The mobile phases were iPrOH:hexane mixtures (10:90 to 3:97).
15. Imuta, M.; Zier, H. J. Org. Chem. 1979, 44, 2505±2509.