Organic Letters
Letter
Synthesis. J. Org. Chem. 2018, 83, 10864−10870. (b) Cano, R.; Yus,
M.; Ramon, D. J. First Practical Cross-Alkylation of Primary Alcohols
with a New and Recyclable Impregnated Iridium on Magnetite
Catalyst. Chem. Commun. 2012, 48, 7628−7630.
Transition Metal-Diene Complexes in Organic Synthesis, Part 18.
Iron-Mediated [2 + 2+1] Cycloadditions of Diynes and Carbon
Monoxide: Selective Demetalation Reactions. Synlett 1993, 1993,
̈
924−926. (i) Knolker, H.-J.; Baum, E.; Heber, J. Transition Metal-
Diene Complexes in Organic Synthesis, Part 25. Cycloadditions of
(6) (a) Li, Y.; Li, H.; Junge, H.; Beller, M. Selective Ruthenium
Catalyzed Methylation of 2-Arylethanols Using Methanol as C1
Feedstock. Chem. Commun. 2014, 50, 14991−14994. (b) Kaithal, A.;
Annulated 2,5-Bis(trimethylsilyl)cyclopentadienones. Tetrahedron
̈
Lett. 1995, 36, 7647−7650. (j) Knolker, H.-J. Trimethylamine N-
Oxide - A Useful Oxidizing Reagent. J. Prakt. Chem./Chem.-Ztg. 1996,
338, 190−192.
̈
Schmitz, M.; Holscher, M.; Leitner, W. Ruthenium(II)-Catalyzed β-
Methylation of Alcohols Using Methanol as C1 Source. ChemCatCh-
Z.; Liu, X.; Wang, X.; Dong, L.; Mu, X.; Liu, H. Iridium Clusters
Encapsulated in Carbon Nanospeheres as Nanocatalysts for
Methylation of (Bio)Alcohols. ChemSusChem 2017, 10, 4748−4755.
(d) Siddiki, S. M. A. H.; Touchy, A. S.; Jamil, Md. A. R.; Toyao, T.;
Shimizu, K.-i. C-Methylation of Alcohols, Ketones, and Indoles with
Methanol Using Heterogenous Platinum Catalysis. ACS Catal. 2018,
8, 3091−3103.
(13) Lator, A.; Gaillard, S.; Poater, A.; Renaud, J.-L. Iron-Catalyzed
Chemoselective Reduction of α,β-Unsaturated Ketones. Chem. - Eur.
J. 2018, 24, 5770−5774.
̈
(14) (a) Knolker, H.-J.; Heber, J.; Mahler, C. H. Transition Metal-
Diene Complexes in Organic Synthesis, Part 14. Regioselective Iron-
Mediated [2 + 2+1] Cycloadditions of Alkynes and Carbon
Monoxide: Synthesis of Substituted Cyclopentadienones. Synlett
1992, 1992, 1002−1004. (b) See also ref 12h.
(15) Schrauzer, G. N. Diphenylacetylene Derivatives of Iron
Carbonyl. J. Am. Chem. Soc. 1959, 81, 5307−5310.
(16) For recent metal base-catalyzed borrowing hydrogen
methylation reactions, see: (a) Bruneau-Voisine, A.; Pallova, L.;
(7) For γ-arylation of primary alcohols via dual catalysis, see:
Lichosyt, D.; Zhang, Y.; Hurej, K.; Dydio, P. Dual-Catalytic
Transition Metal Systems for Functionalization of Unreactive Sites
of Molecules. Nat. Catal. 2019, 2, 114−122.
́
Bastin, S.; Cesar, V.; Sortais, J.-B. Manganese Catalyzed α-
(8) During the preparation of this manuscript, Morrill reported an
iron-catalyzed β-methylation of 2-arylethanols: Polidano, K.;
Williams, J. M. J.; Morrill, L. C. ACS Catal. 2019, 9, 8575−8580.
(9) (a) Bettoni, L.; Seck, C.; Mbaye, M. D.; Gaillard, S.; Renaud, J.-
L. Iron-Catalyzed Tandem Three-Component Alkylation: Rapid
Access to α-Methylated Substituted Ketones. Org. Lett. 2019, 21,
3057−3061. (b) Lator, A.; Gaillard, S.; Poater, A.; Renaud, J.-L. Well
Defined Phosphine-Free Iron Catalyzed N-Ethylation and N-
Methylation of Amines with Ethanol and Methanol. Org. Lett. 2018,
20, 5985−5990. (c) Seck, C.; Mbaye, M. D.; Gaillard, S.; Renaud, J.-
L. Bifunctional Iron Complexes Catalyzed Alkylation of Indoles. Adv.
Synth. Catal. 2018, 360, 4640−4645. (d) Seck, C.; Mbaye, M. D.;
Coufourier, S.; Lator, A.; Lohier, J.-F.; Poater, A.; Ward, T. R.;
Gaillard, S.; Renaud, J.-L. Alkylation of Ketones Catalyzed by
Bifunctional Iron Complexes: From Mechanistic Understanding to
Application. ChemCatChem 2017, 9, 4410−4416.
Methylation of Ketones with Methanol as a C1 Source. Chem.
Commun. 2019, 55, 314−317. (b) Sklyaruk, J.; Borghs, J. C.; El-
Sepelgy, O.; Rueping, M. Catalytic C1 Alkylation with Methanol and
Isotope-Labeled Methanol. Angew. Chem., Int. Ed. 2019, 58, 775−779.
(c) Liu, Z.; Yang, Z.; Yu, X.; Zhang, H.; Yu, B.; Zhao, Y.; Liu, Z.
Methylation of C(sp3)-H/C(sp2)-H Bonds with Methanol Catalyzed
by Cobalt System. Org. Lett. 2017, 19, 5228−5231. (d) Polidano, K.;
Allen, B. D. W.; Williams, J. M. J.; Morrill, L. C. Iron-Catalyzed
Methylation Using the Borrowing Hydrogen Approach. ACS Catal.
2018, 8, 6440−6445. (e) Dambatta, M. B.; Polidano, K.; Northey, A.
D.; Williams, J. M. J.; Morrill, L. C. Iron-Catalyzed Borrowing
Hydrogen C-Alkylation of Oxindoles with Alcohols. ChemSusChem
2019, 12, 2345−2349.
(17) (a) Elangovan, S.; Neumann, J.; Sortais, J.-B.; Junge, K.; Darcel,
C.; Beller, M. Efficient and Selective N-Alkylation of Amines with
Alcohols Catalyzed by Manganese Pincer Complexes. Nat. Commun.
2016, 7, 12641−12649. (b) Neumann, J.; Elangovan, S.;
Spannenberg, A.; Junge, K.; Beller, M. Improved and General
Manganese-Catalyzed N-Methylation of Aromatic Amines Using
Methanol. Chem. - Eur. J. 2017, 23, 5410−5413. (c) Bruneau-Voisine,
A.; Wang, D.; Dorcet, V.; Roisnel, T.; Darcel, C.; Sortais, J.-B. Mono-
N-Methylation of Anilines with Methanol Catalyzed by a Manganese
Pincer-Complex. J. Catal. 2017, 347, 57−62. (d) Liu, Z.; Yang, Z.; Yu,
X.; Zhang, H.; Yu, B.; Zhao, Y.; Liu, Z. Efficient Cobalt-Catalyzed
Methylation of Amines Using Methanol. Adv. Synth. Catal. 2017, 359,
4278−4283.
̈
(10) (a) Knolker, H.-J.; Goesmann, H.; Klauss, R. A Novel Method
for the Demetalation of Tricarbonyliron-Diene Complexes by a
Photolytically Induced Ligand Exchange Reaction with Acetonitrile.
̈
Angew. Chem., Int. Ed. 1999, 38, 702−705. (b) Knolker, H.-J.; Baum,
E.; Goesmann, H.; Klauss, R. Demetalation of Tricarbonyl-
(cyclopentadienone)iron Complexes Initiated by a Ligand Exchange
Reaction with NaOH. X-Ray Analysis of a Complex with Nearly
Square-Planar Coordinated Sodium. Angew. Chem., Int. Ed. 1999, 38,
2064−2066.
́
(11) Thai, T.-T.; Merel, D. S.; Poater, A.; Gaillard, S.; Renaud, J.-L.
Highly Active Phosphine-Free Bifunctional Iron Complex for
Hydrogenation of Bicarbonate and Reductive Amination. Chem. -
Eur. J. 2015, 21, 7066−7070.
(18) Casey, C. P.; Guan, H. Cyclopentadienone Iron Alcohol
Complexes: Synthesis, Reactivity, and Implications for the Mechanism
of Iron-Catalyzed Hydrogenation of Aldehydes. J. Am. Chem. Soc.
2009, 131, 2499−2507.
(12) (a) Pagnoux-Ozherelyeva, A.; Pannetier, N.; Mbaye, D. M.;
Gaillard, S.; Renaud, J.-L. Angew. Chem., Int. Ed. 2012, 51, 4976−
4980. (b) Moulin, S.; Dentel, H.; Pagnoux-Ozherelyeva, A.; Gaillard,
S.; Poater, A.; Cavallo, L.; Lohier, J.-F.; Renaud, J.-L. Chem. - Eur. J.
2013, 19, 17881−17890. (c) Luh, T.-Y. Trimethylamine N-oxide-a
Versatile Reagent for Organometallic Chemistry. Coord. Chem. Rev.
1984, 60, 255−276. (d) Moyer, S. A.; Funk, T. Air-Stable Iron
Catalyse for the Oppenauer Type Oxidation of Alcohols. Tetrahedron
Lett. 2010, 51, 5430−5433. (e) Johnson, T. C.; Clarkson, G. J.; Wills,
M. (Cyclopentadienone) Iron Shvo Complexes: Synthesis and
Applications to Hydrogen Transfer Reactions. Organometallics 2011,
30, 1859−1868. (f) Plank, T. N.; Drake, J. L.; Kim, D. K.; Funk, T. W.
Air-Stable, Nitrile-Ligated (Cyclopentadienone)iron Dicarbonyl
Compounds as Transfer Reduction and Oxidation Catalysts. Adv.
Synth. Catal. 2012, 354, 597−601. (g) Coufourier, S.; Gaillard, S.;
Clet, G.; Serre, C.; Daturi, M.; Renaud, J.-L. MOF-Assisted Phosphine
Free Bifunctional Iron Complex for the Hydrogenation of Carbon
Dioxide, Sodium Bicarbonate and Carbonate to Formate. Chem.
̈
Commun. 2019, 55, 4977−4880. (h) Knolker, H.-J.; Heber, J.
E
Org. Lett. XXXX, XXX, XXX−XXX