10.1002/chem.202005129
Chemistry - A European Journal
COMMUNICATION
synthesis of the alkaloid (±)-deoxyeseroline using the aryl
migration as a key step illustrates the potential of the
developed reaction. Mechanistic studies suggest the
formation of a radical through a SET from a Co(I) complex to
α-bromo N-sulfonyl amide. To the best of our knowledge, it is
the first cobalt-catalyzed aryl migration with SO2 extrusion and
this reactivity pave the way to numerous further
developments.
Barde, S. Bräse, J. Cossy, Org. Lett. 2019, 16, 6241. k) M. M.
Lorion, V. Koch, M. Nieger, H.-Y. Chen, A. Lei, S. Bräse, J. Cossy,
Chem. Eur. J. 2020 DOI: 10.1002/chem.202001721
10
11
For pioneering work in aryl migration/desulfonylation sequence, see:
a) R. Loven, W. N. Speckamp, Tetrahedron Lett. 1972, 16, 1567. b)
J.-C.Arnould, J. Cossy, J.-P. Pète, Tetrahedron Lett. 1976, 43, 3919.
c) J. Cossy, J.-P. Pète, Tetrahedron 1981, 37, 2296.
For selected general reviews on radical aryl migration, see: a) A.
Studer, M. Bossart Tetrahedron 2001, 57, 9649. b) Z.-M. Chen, X.-
M. Zhang, Y.-Q. Tu Chem. Soc. Rev. 2015, 44, 5220. c) C. M.
Holden, M. F. Greaney Chem. Eur. J. 2017, 23, 8992. d) W. Li, W.
Xu, J. Xie, S. Yu, C. Zhu Chem. Soc. Rev. 2018, 47, 654.
Selected examples: a) W. Kong, M. Casimiro, N. Fuentes, E. Merino,
C. Nevado, Angew. Chem. Int. Ed. 2013, 52, 13086-13090. b) W.
Kong, M. Estíbaliz, C. Nevado, Angew. Chem. Int. Ed. 2014, 53,
5078-5082. c) C. Liu, B. Zhang, RSC Adv. 2015, 5, 61199-61203. d)
W. Kong, N. Fuentes, A. Garcìa-Domíguez, M. Estíbaliz, C. Nevado,
Angew. Chem. Int. Ed. 2015, 54, 2487-2491. e) J.-K.Qiu, W.-J. Hao,
L.-F. Kong, W. Ping, S.-J. Tu, B. Jiang, Tetrahedron Lett. 2016, 57,
2414-2417. f) X.-F. Xia, S.-L. Zhu, C. Chen, H. Wang, Y.-M. Liang, J.
Org. Chem. 2016, 81, 1277-1284. g) K. Liu, L.-C. Sui, Q. Jin, D.-Y.
Li, P.-N. Liu, Org. Chem. Front. 2017, 4, 1606-1610. h) P. Biswas, J.
Guin, J. Org. Chem. 2018, 83, 5629-5638.
Acknowledgements
12
We thank the French Ministère de l’Enseignement Supérieur et de la
Recherche (MESR) for financial support (N.G.S and E.B).
The authors declare no conflict of interests.
Keywords: cobalt • α-aryl amide • aryl migration • N-sulfonyl
amide
13
a) A. J. Clark, R. C. Stuart, A. Collis, T. Debure, C. Guy, N. P.
Murphy, P. Wilson, Tetrahedron Lett. 2009, 50, 5609-5612. b) A. J.
Clark, R. C. Stuart, A. Collis, D. R. Fullaway, N. P. Murphy, P.
Wilson, Tetrahedron Lett. 2009, 50, 6311-6314. c) Y. Li, B. Hu, W.
Dong, X. Xie, J. Wan, Z. Zhang J. Org. Chem. 2016, 81, 7036. d)
C.-P. Chuang, Y.-Y. Chen, T.-H. Chuang, C.-H. Yang, Synthesis
2017, 49, 1273-1284. e) X. Gao, C. Li, Y. Yuan, X. Xie, Z. Zhang
Org. Biomol. Chem. 2020, 18, 263.
1
Selected book and reviews: a) A. Greenberg, L. M. Breneman, J. F.
Liebman, In The Amide Linkage: Selected structural Aspects in Chemistry,
Biochemistry and Materials Science Eds Wiley: New York 2000. b) E.
Valeur, M. Bradley, Chem. Soc. Rev. 2009, 38, 606. c) C. L. Allen, J. M.
Williams, Chem. Soc. Rev. 2011, 40, 3405. d) V. R. Pattabiraman, J. W.
Bode, Nature, 2011, 480, 471. e) D.-W Zhang, X. Zhao, J.-L. Hou, Z.-T. Li,
Chem. Rev. 2012, 112, 5271. f) R. M. de Figueiredo, J.-S. Suppo, J.-M.
Campagne, Chem. Rev. 2016, 116, 12029. and references therein.
14
15
See the supporting information for a detailed optimization study.
The robustness of the reaction was assessed by the addition of 1
equiv of water to the reaction mixture. Under these modified
conditions, the α-aryl amide was isolated with a correct yield of 54%,
see SI for details.
2
a) J. Akisanya, A. W. Parkins, J. W. Steed, Org. Proc. Res. Dev.
1998, 2, 274. b) B. Carlberg, O. Samuelsson, L. H. Lindholm,
Lancet, 2004, 364, 1
684. c) S. Bose, A. V. Narsaiah, Bioorg.
Med. Chem. 2005, 13, 627. d) P. Agon, P. Goethals, D. V. Haver, J.
Kaufman, Pharm. Pharmacol. 2011, 43, 597. e) B. P. Dwivedee,
S. Ghosh, J. Bhaumik, L. Banoth, U. C. Banerjee, RSC Adv. 2015, 5,
15850.
16
17
Using NiCl2 (10 mol%) associated to DPEPhos (10 mol%) also led
to 2.1 in good yield (78%).
This result is of importance as α-bromo amides can sometimes be
prepared as mixtures of α-bromo and α-chloro derivatives when
using acyl chloride precursors due to halogen exchange. The
rearrangement is compatible with the use of such mixtures as
starting materials.
A 2.5/3.5/4 ratio of 15:21:64 was determined on the 1H NMR
spectrum of the crude material.
3
a) H. H. Handsfield, H. Clark, J. F. Wallace, K. K. Holmes, M. Turck
Antimicrob. Agents Chemother 1973, 3, 262. b) S. P. Kaur, R. Rao,
S. Nanda Int. J. Pharm. Sci. 2011, 3, 30.
4
5
F. D. Hart, E. C. Huskisson, Drugs 1984, 27, 232.
18
19
20
See for example: a) V. Jullian, Synthesis 1997, 1091. b) T. Honda,
H. Namiki, F. Satoh, Org. Lett. 2001, 3, 631. c) M.-X.Wang, S.-M.
Zhao, Tetrahedron Lett. 2002, 43, 6617.
When a diethylphosphonate was present instead of the ester group,
the exclusive formation of sulfonamide 4 was observed.
For R1= Ph, a mixture of expected, dehalogenated products and
sulfonamide was obtained preventing the isolation of the α-aryl
amide.
6
For enolate arylation using Bi, Pb or Cr derivatives, see: a) R. A.
Abramovitch, D. H. R. Barton, J.-P. Finet, Tetrahedron 1988, 44,
3039. b) J. T. Morgan, J. Pinhey, B. Rowe, J. Chem. Soc., Perkin
Trans. 1 1997, 1005. c) T. Mino, T. Matsuda, K. Maruhashi, M.
Yamashita, Organometallics 1997, 16, 3241.
19
22
Unfortunately, we were not able to isolate by-products resulting from
a nucleophilic attack on the hypothesized ketene intermediate.
An insertion of a low-valent cobalt complex into the C-N bond
cannot be excluded, see: Y. Bourne-Branchu, C. Gosmini, G.
Danoun Chem. Eur. J. 2017, 23, 10043.
7
8
K. H. Shaughnessy, B. C. Hamann, J. F. Hartwig, J. Org. Chem.
1998, 63, 6546.
a) D. A. Culkin, J. F. Hartwig, Acc. Chem. Res. 2003, 36, 234. b) J.
Cossy, A. de Filippis, D. Gomez Pardo, Org. Lett. 2003, 5, 3037. c)
F. Bellina, R. Rossi, Chem. Rev. 2010, 110, 1082. c) C. C. C.
Johansson, T. J. Colacot, Angew. Chem. Int. Ed. 2010, 49, 676. d)
B. Zheng, T. Jia, P. J. Walsh, Org. Lett. 2013, 15, 4190. e) B. Zheng,
T. Jia, P. J. Walsh, Adv. Synth. Catal. 2014, 356, 165. and
references therein.
23
a) U. Anthony, C. Christophersen, P. H. Nielsen, in Alkaloids:
Chemical and Biological Perspectives; S. W. Pelletier, Ed.; Wiley:
New-York, 1999; Vol. 13, 163. b) H. J. Lim, T. V. RajanBabu, Org.
Lett. 2011, 13, 6596. c) G. Özüduru, T. Schubach, M. M. K. Boysen,
Org. Lett. 2012, 14, 4990. d) N. Kumar, V. R. Gavit, A. Maity, A.
Bisai, J. Org. Chem. 2018, 83, 10709.
9
a) L. J. Gooβen, Chem. Commun. 2001, 669. b) Y.-Z. Duan, M.-Z.
Deng, Tetrahedron Lett. 2003, 44, 3423. c) C. Fischer, G. C. Fu, J.
Am. Chem. Soc. 2005, 127, 4594. d) C. Liu, C. He, W. Shi, M. Chen,
A. Lei, Org. Lett. 2007, 9, 5601. e) N. A. Strotman, S. Sommer, G. C.
Fu Angew. Chem. Int. Ed. 2007, 46, 3556. f) P. M. Lundin, G. C. Fu,
J. Am. Chem. Soc. 2010, 132, 11027. g) M. Jin, M. Nakamura,
Chem. Lett. 2011, 40, 1012. h) A. Tarui, S. Shinohara, K. Sato, M.
Omote, A. Ando, Org. Lett. 2016, 18, 1128. i) E. Barde, A. Guérinot,
J. Cossy, Org. Lett. 2017, 19, 6068. j) V. Koch, M. M. Lorion, E.
24
25
Prepared from the corresponding sulfonamide and α-bromo
propionyl bromide (94%, 2 steps, see SI for details).
Selected articles: a) M. Amatore, C. Gosmini, J. Périchon, Eur. J.
Org. Chem. 2005, 989. b) M. Amatore, C. Gosmini, Angew. Chem.
Int. Ed. 2008, 47, 2089. c) A. Moncomble, P. L. Le Floch, C.
Gosmini, Chem. Eur. J. 2009, 15, 4770. d) M. Amatore, C. Gosmini,
Chem. Eur. J. 2010, 16, 5848. e) A. Moncomble, P. L. Floch, A.
Lledos, C. Gosmini, J. Org. Chem. 2012, 77, 5056.
5
This article is protected by copyright. All rights reserved.