The Wolff photoproducts 4d and 5d can be considered as a
type of chlorin since they possess an electronic structure with the
requisite 20p electron macrocycle. This assumption is supported by
the chlorin-like electronic absorption spectra of these compounds
(e.g. 4d, Fig. 3), which show a prominent Qx band as the lowest
energy feature. Relative to the starting diazo-oxochlorin 4, the
absorption profile of 4d exhibits a modest blue-shift, likely due to
reduction of the conjugation length and pronounced planarity of
the macrocycle.33
The authors wish to thank Dr Mahendra Nath and David F. Dye
for technical assistance, as well as Indiana University for funding
of this work.
References
1 H. Imahori, Y. Mori and Y. Matano, J. Photochem. Photobiol., C, 2003,
4, 51.
2 M. J. Crossley, L. J. Govenlock and J. K. Prashar, J. Chem. Soc., Chem.
Commun., 1995, 2379.
3 A. Jasat and D. Dolphin, Chem. Rev., 1997, 97, 2267.
4 T. Ye and M. A. McKervey, Chem. Rev., 1994, 94, 1091.
5 L. Horner, E. Spietschka and E. Becker, Chem. Ber., 1955, 88,
934.
6 W. Kirmse, Eur. J. Org. Chem., 2002, 2193.
7 J. L. Sessler and D. Seidel, Angew. Chem., Int. Ed., 2003, 42, 5134.
8 J. A. S. Cavaleiro, V. M. Gerdan, H. K. Hombrecher, M. G. P. M. S.
Neves and A. M. S. Silva, Heterocycl. Commun., 1997, 3, 253.
9 D. F. DeTar and D. I. Relyea, J. Am. Chem. Soc., 1954, 76, 1680.
10 H. J. Eppley, S. M. Lato, J. M. Zaleski and A. D. Ellington, Chem.
Commun., 1999, 2405.
11 B. J. Kraft, H. J. Eppley, J. C. Huffman and J. M. Zaleski, J. Am. Chem.
Soc., 2002, 124, 272.
12 T. D. Maurer, B. J. Kraft, S. M. Lato, J. M. Zaleski and A. D. Ellington,
Chem. Commun., 2000, 69.
13 T. Chandra, B. J. Kraft, J. C. Huffman and J. M. Zaleski, Inorg. Chem.,
2003, 42, 5158.
14 M. Nath, M. Pink and J. M. Zaleski, J. Am. Chem. Soc., 2005, 127,
478.
Fig. 3 Electronic absorption spectra for 4 and 4d in CH2Cl2.
15 M. J. Crossley, P. L. Burn, S. J. Langford, S. M. Pyke and A. G. Stark,
J. Chem. Soc., Chem. Commun., 1991, 1567.
16 H. W. Daniell, S. C. Williams, H. A. Jenkins and C. Bru¨ckner,
Tetrahedron Lett., 2003, 44, 4045.
17 J. Meinwald and J. K. Crandall, J. Am. Chem. Soc., 1966, 88, 1292.
18 B. M. Trost and P. L. Kinson, J. Am. Chem. Soc., 1975, 97, 2438.
19 K. B. Wiberg, B. R. Lowry and T. H. Colby, J. Am. Chem. Soc., 1961,
83, 3998.
20 T. Ko¨pke, M. Pink and J. M. Zaleski, Synlett, 2006, 2183.
21 H. K. Hombrecher, V. M. Gerdan, J. A. S. Cavaleiro and M. G. P. M. S.
Neves, Heterocycl. Commun., 1997, 3, 453.
22 Y. Chiang, M. Gaplovsky, A. J. Kresge, K. H. Leung, C. Ley, M. Mac,
G. Persy, D. L. Phillips, V. V. Popik, C. Roedig, J. Wirz and Y. Zhu,
J. Am. Chem. Soc., 2003, 125, 12872.
To probe whether visible region photolysis could generate the
Wolff product, 4 and 5 were irradiated with a HgXe lamp (200 W,
◦
k ≥ 395 nm) for 48 h at 10 C in a Pyrex vessel under nitrogen.
Although the photolysis times were increased, Wolff products 4d
and 5d are still obtained in 6% and 8% isolated yields, respectively,
due to conjugation of the diazo unit into the visible region pp*
transitions of the macrocycle.
The formation of Wolff products 4d–6d and C–C bond coupling
species 4e derive from carbene insertion, suggesting formation of
a singlet carbene intermediate. Indeed, photolysis (Hg arc lamp;
100 W, 5 h) of a frozen solution of 4 and 5 at 5 K within an
EPR cavity (X-band) yields no new EPR signals between 500–
7000 G characteristic of a triplet carbene, despite detection of
photoproduct by TLC upon thawing. Our experience in detecting
carbene and triplet diradical intermediates by frozen solution
photolysis/EPR at 5 K11,34 leads us to conclude that the carbene
intermediates of both 4 and 5 are likely singlet in nature. This is
consistent with their ability to effectively participate in the Wolff
rearrangement and C–C bond coupling rather than olefin or azine
formation.35 Herein we demonstrate a new synthetic approach
to 2-diazo-3-oxochlorins and the unprecedented photochemical
formation of azeteoporphyrins via the Wolff ring contraction.
Photoproduct analysis and low-temperature EPR measurements
suggest that singlet carbene intermediates are formed, leading to
insertion reactions, as well as formation of the ketene intermediate
of the Wolff pathway. In a general sense, our synthetic strategy
allows selective installation of a photo-labile fragment on the
periphery of a chlorin macrocycle and can therefore be seen as
a synthetic tool for future periphery modifications on porphyrinic
heterocycles. Overall, both carbene and ketene intermediates of
this type may find potential as in situ alkylating agents in photo-
therapeutic applications in hypoxic environments.
23 C. Bru¨ckner, M. A. Hyland, E. D. Sternberg, J. K. MacAlpine, S. J.
Rettig, B. O. Patrick and D. Dolphin, Inorg. Chim. Acta, 2005, 358,
2943.
24 M. J. Crossley and L. G. King, J. Chem. Soc., Chem. Commun., 1984,
920.
25 CCDC reference numbers 605756 (4d), 605758 (4e), and 605757
(5d). For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b612776m. Crystal data for 4d: brown block, 0.25 ×
0.23 × 0.18 mm3, C45H30N4NiO2, M = 717.44, orthorhombic, a =
3
˚
˚
˚
˚
17.0768(12) A, b = 14.1377(10) A, c = 27.7514(19) A, V = 6699.9(8) A ,
T = 130(2) K, space group Pbcn, Z = 8, qcalcd = 1.423 Mg m−3
,
l = 0.627 mm−1, 2hmax = 50◦, MoKa (k = 0.71073). A total of 78224
reflections were measured, of which 5956 (Rint = 0.0526) were unique.
Final residuals were R = 0.0441 and wR2 = 0.1025 (for 5104 observed
reflections with I > 2r(I), 500 parameters) with GOF 1.231 and largest
residual peak 0.322 e A and hole −0.405 e A−3. R1 = 0.0533 and
−3
˚
˚
wR2 = 0.1073 for all data.
26 Crystal data for 5d: dark blue block, 0.15 × 0.11 × 0.10 mm3,
˚
C45H30CuN4O2, M = 722.27, orthorhombic, a = 17.074(3) A, b =
3
˚
˚
˚
14.209(2) A, c = 27.882(4) A, V = 6764.3(19) A , T = 130(2) K, space
group Pbcn, Z = 8, qcalcd = 1.418 Mg m−3, l = 0.693 mm−1, 2hmax
=
52◦, MoKa (k = 0.71073). A total of 72376 reflections were measured,
of which 6870 (Rint = 0.1183) were unique. Final residuals were R =
0.0522 and wR2 = 0.1064 (for 4587 observed reflections with I >
2r(I), 470 parameters) with GOF 1.047 and largest residual peak 0.306
e A and hole −0.572 e A−3. R1 = 0.0926 and wR2 = 0.1233 for all
−3
˚
˚
data.
27 J. Meinwald and P. G. Gassman, J. Am. Chem. Soc., 1960, 82, 2857.
28 J. G. Calvert and J. N. Pitts, Jr., Photochemistry, Wiley, New York,
1966, p. 783.
This journal is
The Royal Society of Chemistry 2006
Org. Biomol. Chem., 2006, 4, 4059–4062 | 4061
©