J. Am. Chem. Soc. 1996, 118, 893-894
893
Communications to the Editor
bonding mode of the bridging N2.18 The benzamidinates are
bonded in a typical manner, with the metal atom essentially in
the NCN plane. The extremely short Ti-(µ-N2) bond distances
(1.771(5) and 1.759(5) Å) and the long N-N bond length
(1.275(6) Å) are similar to values reported19,20 for the diamag-
netic species {[(Me3Si)2N]TiCl(C6H5N)2}2(µ-N2) (1.759 and
1.263 Å) and {[(Me3Si)2N]TiCl(TMEDA)}2(µ-N2) (1.762 and
1.289 Å) and are suggestive of extensive delocalization of the
Ti2(µ-N2) core compared to metallocene systems. For com-
parison, the paramagnetic metallocene complexes (Cp*2Ti)2(µ-
N2),21 [Cp2Ti(PMe3)]2(µ-N2),22 and [Cp2Ti(p-CH3C6H4)]2Ti(µ-
N2)23 show Ti-(µ-N2) bonds of 2.017, 1.921, and 1.962 Å and
N-N bond lengths of 1.160, 1.191, and 1.162 Å, respectively.
In spite of the long N-N bond in {[PhC(NSiMe3)2]2Ti}2(µ-
N2), the compound is thermally robust and is unreactive toward
H2, CO, or alkynes, even after heating to 70 °C for several days.
Carrying out the above reduction under an atmosphere of CO
resulted in the formation of highly O2-sensitive {[PhC(NSiMe3)2]2-
Ti}2(µ-O), which was isolated as red crystals from hexanes in
18% yield. No other products were isolated from the reaction
mixture, and the fate of the carbon atom remains to be
determined. Repeating the reduction in the absence of CO
yielded only intractable oils. Related reactions involving low-
valent tantalum are known to form oxo and dicarbide species;24
nonetheless, in general, C-O bond cleavage remains rare.25 Due
to the scarcity of structurally characterized (µ-oxo)dititanium-
(III) species, we carried out single-crystal X-ray analysis,17
which confirmed the five-coordinate, bridging oxo structure.
The molecule has a nearly linear Ti-O-Ti linkage of 177.2-
(2)° which is intermediate to values reported for (Cp2Ti)2(µ-
O)26 and (Me3tacn)2Ti2(NCO)4(µ-O)27 (170.9 and 180.0° re-
spectively). The short Ti-O bond (1.821(4) Å) suggests partial
double bond character and is similar to those of (Cp2Ti)2(µ-
O)26 and (Me3tacn)2Ti2(NCO)4(µ-O)27 (tacn ) triazacyclononane),
which both have bond lengths of 1.838 Å. The compound is
paramagnetic, with a µeff ) 2.4 µB, consistent with two
essentially uncoupled d1-Ti centers. This value is similar to
those for (Me3tacn)2Ti2-(NCO)4(µ-O) and (Me3tacn)2Ti2(NCS)4-
(µ-O), which display only weakly antiferromagnetic coupling
(J ) 7 cm-1 av).27
Low-Valent Chemistry of Titanium Benzamidinates
Leading to New Ti µ-N2, µ-O, Alkyl Derivatives,
and the Cyclometalation of TMEDA
John R. Hagadorn and John Arnold*
Department of Chemistry, UniVersity of California
Berkeley, California 94720-1460
ReceiVed October 13, 1995
In efforts to develop alternative ligand arrays to the ubiquitous
Cp2 fragment, whose transition metal chemistry has been widely
explored1-3 and has provided a host of important discoveries
over the years, a number of research groups have turned their
attention to nitrogen-based donors.4-7 For comparison to our
work on early transition metal porphyrin derivatives,8-10 we
recently began a study of the N4-donor environment provided
by bis-amidinate ligand systems. In particular, we were attracted
to the N,N′-bis(trimethylsilyl)benzamidinate ligand system, as
this has shown considerable promise for the stabilization of a
wide variety of early transition metal complexes in a variety of
oxidation states.11-13
Following our recent report14 on the reaction chemistry of
[PhC(NSiMe3)2]2ZrCl2, we now report related results on the
corresponding Ti system developed earlier by Roesky15 and
Gambarotta.16 Our studies have yielded a range of new Ti(III)
species with some unusual reactivity, including the cyclometa-
lation of N,N,N′,N′-tetramethylethylenediamine (TMEDA) and
the cleavage of an amidinate ligand.
As shown is Scheme 1, reduction of [PhC(NSiMe3)2]2TiCl2
with 1% Na/Hg in toluene under N2, followed by crystallization
from hexanes, yielded blue-black crystals of the diamagnetic
complex {[PhC(NSiMe3)2]2Ti}2(µ-N2) in 18% yield. The X-ray
structure17 reveals five-coordinate titanium and the end-on
(1) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles
and Applications of Organotransition Metal Chemistry; University Science
Books: Mill Valley, CA, 1987.
(2) Crabtree, R. H. The Organometallic Chemistry of the Transition
Metals, 2nd ed.; Wiley Interscience: New York, 1994.
(3) Elschenbroich, C.; Salzer, A. Organometallics: A Concise Introduc-
tion, 2nd ed.; VCH: New York, 1992.
A rare example of a Ti(III) alkyl, [PhC(NSiMe3)2]2TiMe, was
prepared in 69% yield via the Na/Hg reduction of [PhC-
(NSiMe3)2]2TiMe(Cl) in THF. The paramagnetic product was
isolated as red crystals from hexamethyldisiloxane and is stable
for weeks at room temperature in a fluorescent-lit drybox.
Attempts to carry out the reduction in benzene resulted in the
(4) Jacoby, D.; Isoz, S.; Floriani, C.; Chiesi-Villa, A.; Rizzoi, C. J. Am.
Chem. Soc. 1995, 117, 2793.
(5) Togni, A.; Venanzi, L. M. Angew. Chem., Int. Ed. Engl. 1994, 33,
497.
(6) Uhrhammer, R.; Black, D. G.; Gardner, T. G.; Olsen, J. D.; Jordan,
R. F. J. Am. Chem. Soc. 1993, 115, 8493.
(7) Andersen, R. A. Inorg. Chem. 1979, 18, 2928.
(8) Brand, H.; Arnold, J. Angew. Chem., Int. Ed. Engl. 1994, 33, 95.
(9) Brand, H.; Capriotti, J. A.; Arnold, J. Organometallics 1994, 13, 4469.
(10) Brand, H.; Arnold, J. Coord. Chem. ReV. 1995, 140, 137.
(11) Edelmann, F. T. Coord. Chem. ReV. 1994, 137, 403.
(12) Dehnicke, K. Chem.-Ztg. 1990, 114, 295.
(13) Barker, J.; Kilner, M. Coord. Chem. ReV. 1994, 133, 219.
(14) Hagadorn, J. R.; Arnold, J. Organometallics 1994, 13, 4670.
(15) Roesky, H. W.; Meller, B.; Noltemeyer, M.; Schmidt, H. G.; Scholz,
U.; Sheldrick, G. M. Chem. Ber. 1988, 121, 1403.
(16) Dick, D. G.; Duchateau, R.; Edema, J. H.; Gambarotta, S. Inorg.
Chem. 1993, 32, 1959.
a ) 10.1066(4) Å, b ) 16.5269(7) Å, c ) 11.4930(3) Å, â ) 115.628(1)°,
V ) 1730(1) Å, Z ) 4, dcalc ) 1.159 cm-1, µ ) 3.76 cm-1, T ) -133 °C,
no. of observations ) 2074, no. of parameters ) 351, R ) 4.06, Rw
)
4.21. Details of the structure determination are provided as supporting
information.
(18) Hidai, M.; Mizobe, Y. Chem. ReV. 1995, 95, 1115.
(19) Beydoun, N.; Duchateau, R.; Gambarotta, S. J. Chem. Soc., Chem.
Commun. 1992, 244.
(20) Duchateau, R.; Gambarotta, S.; Beydoun, N.; Bensimon, C. J. Am.
Chem. Soc. 1991, 113, 8986.
(17) Crystal data for {[PhC(NSiMe3)2]2Ti}2(µ-N2): Pna21, a ) 25.2377-
(14) Å, b ) 14.1803(8) Å, c ) 19.4904(11) Å, V ) 6975(1) Å, Z ) 4, dcalc
) 1.122 cm-1, µ ) 4.04 cm-1, T ) -110 °C, no. of observations ) 4166,
no. of parameters ) 647, R ) 4.48, Rw ) 4.86. For {[PhC(NSiMe3)2]2-
Ti}2(µ-O): P21/n, a ) 15.753(1) Å, b ) 27.0170(3) Å, c ) 18.9861(3) Å,
â ) 90.388(1)°, V ) 8080(1) Å, Z ) 4, dcalc ) 1.100 cm-1, µ ) 3.56
cm-1, T ) -100 °C, no. of observations ) 7344, no. of parameters ) 974,
R ) 6.83, Rw ) 8.06%. For [PhC(NSiMe3)2]2TiMe: P21/n, a ) 10.4828-
(2) Å, b ) 32.0722(4) Å, c ) 11.5537(2) Å, â ) 116.0329(1)°, V ) 3490-
(1) Å, Z ) 4, dcalc ) 1.123 cm-1, µ ) 4.03 cm-1, T ) -124 °C, no. of
observations ) 3222, no. of parameters ) 521, R ) 3.99, Rw ) 4.37. For
[PhC(NSiMe3)2]Ti[η2-Me3SiNC(H)Ph][η3-CH2N(Me)CH2CH2N(Me)2]: P21,
(21) Sanner, R. D.; Duggan, D. M.; McKenzie, T. C.; Marsh, R. E.;
Bercaw, J. E. J. Am. Chem. Soc. 1976, 98, 8358.
(22) Berry, D. H.; Procopio, L. J.; Carroll, P. J. Organometallics 1988,
7, 570.
(23) Zeinstra, J. D.; Teuben, J. H.; Jellinek, F. J. Organomet. Chem.
1979, 170, 39.
(24) LaPointe, R. E.; Wolczanski, P. T.; Mitchell, J. F. J. Am. Chem.
Soc. 1986, 108, 6382.
(25) Planalp, R. P.; Andersen, R. A. J. Am. Chem. Soc. 1983, 105, 7774.
(26) Honold, B.; Thewalt, U.; Herberhold, M.; Alt, H. G.; Kool, L., B.;
Rausch, M. D. J. Organomet. Chem. 1986, 314, 105.
(27) Jeske, P.; Wieghardt, K.; Nuber, B. Inorg. Chem. 1994, 33, 47.
0002-7863/96/1518-0893$12.00/0 © 1996 American Chemical Society