70
Letters in Organic Chemistry, 2009, Vol. 6, No. 1
Fécourt et al.
(2E)-3,7-dimethylocta-2,6-dien-4-ynol (7E):
1H-NMR (300 MHz) CDCl3: 1.87 (br d, 3H, J = 1.7Hz);
1.93 (br s, 3H); 2.31 (d, 3H, J = 1.4 Hz); 5.44-5.47 (m, 1H);
6.16 (dq, 1H, J = 1.4, 8.0 Hz); 10.01 (d, 1H, J = 8.0 Hz). 13C-
NMR (75 MHz) CDCl3: 18.6 (CH3); 21.4 (CH3); 25.2 (CH3);
93.5 (Cq); 98.1 (Cq); 104.9 (CH); 132.4 (CH); 141.5 (Cq);
153.4 (Cq); 190.2 (CH). MS (CI/isobutane): m/z (%) = 149.1
([M+H]+, 100), 133.2 (17). IR (NaCl; cm-1): 1140; 1216;
1585; 1664; 2182; 2849-3019.
To a solution of 1-bromo-2-methylpropene (1.02 g, 7.55
mmol, 1.1 eq.) in anhydrous and degassed Et2NH (10 mL)
were successively added at 0°C PdCl2(PPh3)2 (0.096 g 0.137
mmol, 0.02 eq.), CuI (0.131 g, 0.688 mmol, 0.10 eq.) and a
solution of (2E)-3-methylpent-2-en-3-ynol 3E (0.660 g, 6.87
mmol, 1 eq.) in anhydrous and degassed Et2NH (20 mL).
The initially slightly yellow solution gradually darkened.
After disappearance of the starting material as judged from
TLC (3 to 4 h), a saturated aqueous solution of ammonium
chloride was added at 0°C. After extraction with diethyl
ether, the combined organic layers were washed with water
dried over Na2SO4, concentrated. The crude orange-brown
oil was purified by flash chromatography (cyclohex-
ane/EtOAc: 4/1) to give pure 7E (0.473 g, 45%) as slightly
yellow oil.
1H-NMR (300 MHz) CDCl3: 1.35 (s, 1H); 1.82 (br d, 3H,
J = 1.6 Hz); 1.86 (dt, 3H, J = 0.8, 1.5 Hz); 1.90 (br s, 3H);
4.23 (d, 2H, J = 6.9 Hz); 5.35-5.37 (m, 1H); 5.95 (tq, 1H, J =
1.5, 6.9 Hz). 13C-NMR (75 MHz) CDCl3: 17.8 (CH3); 21.0
(CH3); 24.9 (CH3); 59.3 (CH2); 86.2 (Cq); 93.7 (Cq); 105.2
(CH); 121.6 (Cq); 133.9 (CH); 148.8 (Cq). MS (EI): m/z (%)
= 150.2 ([M]+, 80); 135.1 (83); 107.2 (72); 91.1 (100); 79.1
(52). IR (NaCl; cm-1): 1050, 1375, 1432, 2930, 3358.
ACKNOWLEDGEMENTS
We thank CNRS and MESR for providing financial sup-
port. PP also thanks the Roche, now DSM, company for a
generous gift of the alcohols 3E and 3Z.
REFERENCES
[1]
(a) Faulkner, D.J.; Fenical, W.H., Eds. Marine natural products
chemistry, Plenum: New York, 1977; pp. 159-164; (b) Wright, J.
T.; de Nys, R.; Poore, A.G.B.; Steinberg, P.D. Ecology, 2004, 85,
2946-2959; (c) G. Pohnert, Top. Curr. Chem., 2004, 239, 179-219;
(d) Paul, V.J.; Puglisi, M.P.; Ritson-Williams, R. Nat. Prod. Rep.,
2006, 23, 153-180.
[2]
Meusnier, I.; Olsen, J.L.; Stam, W.T.; Destombe, C.; Valero, M.
Mol. Ecol., 2001, 10, 931-946.
[3]
[4]
Amade, P.; Lemee R. Aquat. Toxicol., 1998, 43, 287-300.
Ribera, M.A.; Ballesteros, E.; Boudouresque, C.F.; Gomez, A.;
Gravez, V., Eds., Second International Workshop on Caulerpa
taxifolia, Univ. Barcelona Publ.: Barcelona, 1996.
Taxifolial D (= (2Z)-3,7-dimethylocta-2,6-dien-4-ynal)
To a solution of dienynol 7Z (0.130 g, 0.865 mmol) in
anhydrous CH2Cl2 (5 mL), was added anhydrous MnO2
(0.650 g, 7.477 mmol, 8.6 eq.). The solution was stirred
overnight. The mixture was then filtrated through a pad of
Celite®. Solvent evaporation gave Taxifolial D (0.123 g,
96%) as slightly yellow oil.
1H-NMR (300 MHz) CDCl3: 1.87 (br d, 3H, J = 1.4 Hz);
1.93 (br s, 3H); 2.12 (d, 3H, J = 1.4 Hz); 5.45-5.58 (m, 1H);
6.09 (dq, 1H, J = 1.4, 8.3 Hz); 10.03 (d, 1H, J = 8.3 Hz). 13C-
NMR (75 MHz) CDCl3: 21.6 (CH3); 25.1 (CH3); 25.2 (CH3);
88.7 (Cq); 99.3 (Cq); 104.7 (CH); 133.6 (CH); 143.2 (Cq);
153.3 (Cq); 192.9 (CH). MS (CI/isobutane): m/z (%) = 149.1
([M+H]+, 100), 133.2 (19). IR (NaCl; cm-1): 1140; 1216;
1585; 1664; 2182; 2849-3019.
[5]
(a) Guerriero, A.; Meinesz, A.; D'Ambrosio, M.; Pietra, F. Helv.
Chim. Acta, 1992, 75, 689; (b) Guerriero, A; Marchetti, F.; D'Am-
brosio, M.; Senesi, S.; Dini, F.; Pietra, F. Helv. Chim. Acta, 1993,
76, 855.
(a) Jung, V.; Thibaut, T.; Meinesz, A.; Pohnert, G. J. Chem. Ecol.,
2002, 28, 2091; (b) Adolph, S.; Jung,V.; Rattke, J.; Pohnert, G.
Angew. Chim. Int. Ed., 2005, 44, 2806.
Barbier, P.; Guise, S.; Huitorel, P.; Amade, P.; Pesando, D.; Bri-
and, C.; Peyrot, V. Life Sci., 2001, 70, 415.
Fécourt, F. PhD, University L. Pasteur, Strasbourg, 2006.
Halbes-Letinois, U.; Pale, P. In Leading Edge Organometallic
Chemistry Research; Cato, M.A. Ed.; Nova Publishers: New-York,
2006; pp. 93-131.
(a) Holmes, A.B.; Jennings-White, C.L.D.; Kendrick, D.A. J.
Chem. Soc. Chem. Commun., 1983, 415-416; (b) Holmes, A.B.;
Jennings-White, C.L.D.; Schulthess, A.H. J. Chem. Soc. Chem.
Comm., 1979, 542.
Nahm, S.; Weinreb, S.M. Tetrahedron Lett., 1981, 39, 3835-3838.
Gibson, A.W.; Humphrey, G.R.; Kennedy, D.J.; Wright, S.H.B.
Synthesis, 1991, 414.
[6]
[7]
[8]
[9]
[10]
[11]
[12]
IsoTaxifolial D (= (2E)-3,7-dimethylocta-2,6-dien-4-ynal)
[13]
[14]
Sonogashira, K.; Tohda, Y.; Hagihara, Y. Tetrahedron Lett., 1975,
50, 4467-4468.
(a) Bartolo, G.; Giuseppe, S.; Egidio, L. J. Org. Chem., 1999, 64,
7687-7693; (b) Mori, K.; Ohki, M.; Sato, A.; Matsui, M. Tetrahe-
dron, 1972, 28, 3739-3745; (c) Gavrilov, B.M.; Zvonkova, E.N.;
Evstigneeva, R.P. Zh. Org. Khim., 1971, 7, 1783-1786.
To a solution of dienynol 7E (0.129 g, 0.859 mmol) in
anhydrous CH2Cl2 (5 mL), was added anhydrous MnO2
(0.649 g, 7.465 mmol, 8.7 eq.). The solution was stirred
overnight in the absence of light. The mixture was filtrated
through a pad of Celite®. Solvent evaporation gave Isotaxi-
folial D (0.121 g, 95%) as slightly yellow oil.