10.1002/adsc.201701244
Advanced Synthesis & Catalysis
References
2016, 18, 1064; g) Y. Li, F. Xie, X. Li, J. Org. Chem.
2016, 81, 715; h) D. Das, P. Poddar, S. Maity, R.
Samanta, J. Org. Chem. 2017, 82, 3612; i) J. Li, Y.
Yang, Z. Wang, B. Feng, J. You, Org. Lett. 2017, 19,
3083; j) S. Yu, Y. Li, X. Zhou, H. Wang, L. Kong, X.
Li, Org. Lett. 2016, 18, 2812; (k) K. A. Kumar, P.
Kannaboina, P. Das, Org. Biomol. Chem. 2017, 15,
5457. l) T. Li, C. Fu, Q. Ma, Z. Sang, Y. Yang, H.
Yang, R. Lv, B. Li, J. Org. Chem. 2017, 82, 10263. m)
A. Biswas, D. Giri, D. Das, A. De, S. K. Patra, R.
Samanta, J. Org. Chem. 2017, 82, 10989. n) J. Ni, H.
Zhao, A. Zhang, Org. Lett. 2017, 19, 3159. o) S.-Y.
Chen, Q. Li, H. Wang, J. Org. Chem. 2017, 82, 11173.
[1] Selected references: a) L. Ackermann, Acc. Chem. Res.
2014, 47, 281; b) Y. Zhang, X. Jie, H. Zhao, G. Li, W.
Su, Org. Chem. Front. 2014, 1, 843; c) C. X. Zhuo, C.
Zheng, S. L. You, Acc. Chem. Res. 2014, 47, 2558; d) F.
Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613;
e) Y. F. Han, G. X. Jin, Chem. Soc. Rev. 2014, 43,
2799; f) G. Song, X. Li, Acc. Chem. Res. 2015, 48,
1007; g) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y.
Zhang, Org. Chem. Front. 2015, 2, 1107; h) T. Gensch,
M. N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem.
Soc. Rev. 2016, 45, 2900; For site-selective direct
functionalization: i) L. Ping, D. S. Chung, J. Bouffard,
S.-g. Lee, Chem. Soc. Rev. 2017, 46, 4299.
[7] Selected review on transition metal catalyzed amidation
via direct C-H functionalization: a) Y. Park, Y. Kim, S.
Chang, Chem. Rev. 2017, 117, 9247; b) C. E. Hendrick,
Q. Wang, J. Org. Chem. 2017, 82, 839; c) H. Kim, S.
Chang, ACS Catal. 2016, 6, 2341; d) J. Jiao, K.
Murakami, K. Itami, ACS Catal. 2016, 6, 610; e) K.
Shin, H. Kim, S. Chang, Acc. Chem. Res. 2015, 48,
1040; f) R.M. de Figueiredo, J.-S. Suppo, J.-M.
Campagne, Chem. Rev. 2016, 116, 12029; g) R. K. Rit,
M. Shankar, A. K. Sahoo Org. Biomol. Chem. 2017, 15,
1282.
[2] a) L. A. Mitscher, Chem. Rev. 2005, 105, 559; b) I. V.
Magedov, M. Manpadi, M. A. Ogasawara, A. S.
Dhawan, S. Rogelj, S. V. slambrouck, W. F. A.
Steelant, N. M. Evdokimov, P. Y. Uglinskii, E. M.
Elias, E. J. Knee, P. Tongwa, M. Yu. Antipin, A.
Kornienko, J. Med. Chem. 2008, 51, 2561; c) C. Ito, M.
Itoigawa, A. Furukawa, T. Hirano, T. Murata, N.
Kaneda, Y. Hisada, K. Okuda, H. Furukawa, J. Nat.
Prod. 2004, 67, 1800; e) M. D. Crozet, P. George, M. P.
Crozet, P. Vanelle, Molecules 2005, 10, 1318. g) S.
Heeb, M. P. Fletcher, S. R. Chhabra, S. P. Diggle, P.
Williams, M. Camara, FEMS Microbiol Rev. 2011, 35,
247.
[8] Selected recent references: a) D. Mu, X. Wang, G.
Chen , G. He, J. Org. Chem. 2017, 82, 4497; b) Y. Li,
Y. Feng, L. Xu, L. Wang, X. Cui, Org. Lett. 2016, 18,
4924; c) X.-H. Liu, H. Park, J.-H. Hu, Y. Hu, Q.-L.
Zhang, B.-L. Wang, B. Sun, K.-S. Yeung, F.-L. Zhang,
J.-Q. Yu, J. Am. Chem. Soc. 2017, 139, 888; d) T.
Zhang, Z. Wang, X. Hu, M. Yu, T. Deng, G. Li, H. Lu,
J. Org. Chem. 2016, 81, 4898; e) H. Kim, S. Chang,
ACS Catal. 2015, 5, 6665; g) S. Kim, P. Chakrasali, H.
S. Suh, N. K. Mishra, T. Kim, S. H. Han, H. S. Kim, B.
M. Lee, S. B. Han, I. S. Kim, J. Org. Chem. 2017, 82,
7555; h) S. Chen, B. Feng, X. Zheng, J. Yin, S. Yang, J.
You, Org. Lett. 2017, 19, 2502; i) J. Xia, X. Yang, Y.
Li, X. Li, Org. Lett. 2017, 19, 3243; j) V. Lankea, K. R.
Prabhu, Chem. Commun. 2017, 53, 5117; k) F. Wang,
L. Jin, L. Kong, X. Li, Org. Lett. 2017,19,1812; l) H.
Kim, G. Park, J. Park, S. Chang, ACS Catal. 2016, 6,
5922. m) Y.-F. Zhang, B. Wu, Z.-J. Shi, Chem. Eur. J.
2016, 22, 17808; n) L. Xu, L. Tan, D. Ma, J. Org.
Chem. 2016, 81, 10476; o) L. Xu, L. Wang, Y. Feng, Y.
Li, L. Yang, X. Cui, Org. Lett. 2017, 19, 4343. p) L.
Wang, Z. Yang, M. Yang, R. Zhang, C. Kuaia, X. Cui,
Org. Biomol. Chem. 2017, 15, 8302.
[3] Selected references for isoquinolone and 4-quinolone
functionalization: a) S. Lee, S. Mah, S. Hong, Org. Lett.
2015, 17, 3864; b) S. Kwon, D. Kang, S. Hong, Eur. J.
Org. Chem. 2015, 2015, 3671; c) Y. Moon, D. Kwon, S.
Hong, Angew. Chem. Int. Ed. 2012, 51, 11333; d) D.
Kang, S. Hong, Org. Lett. 2015, 17, 1938; e) A. C.
Shaikh, D. R. Shinde, N. T. Patil, Org. Lett. 2016, 18,
1056; f) M. P. Huestis, J. Org. Chem. 2016, 81, 12545.
[4] Selected references for pyridone C3 functionalization:
a) A. Nakatani, K. Hirano, T. Satoh, M. Miura, Chem.
Eur. J. 2013, 19, 7691; b) A. Nakatani, K. Hirano, T.
Satoh, M. Miura, J. Org. Chem. 2014, 79, 1377; c) A.
Modak, S. Rana, D. Maiti, J. Org. Chem. 2015, 80,
296; d) E. E. Anagnostaki, A. D. Fotiadou, V.
Demertzidou, A. L. Zografos, Chem. Commun. 2014,
50, 6879; e) M. Min, Y. Kim, S. Hong, Chem. Commun.
2013, 49, 196; f) D. Cheng, T. Gallagher, Org. Lett.
2009, 11, 2639; g) U. Dutta, A. Deb, D. W. Lupton, D.
Maiti, Chem. Commun. 2015, 51, 17744.
[9] a) A. Biswas, U. Karmakar, S. Nandi, R. Samanta, J.
Org. Chem. 2017, 82, 8933. b) U. Karmakar, D. Das, R.
Samanta, Eur. J. Org. Chem. 2017, 2017, 2780.
[5] Selected references for pyridone C4 functionalization:
W. Miura, K. Hirano, M. Miura, Synthesis 2017, 49,
4745.
[10] a) J. Ryu, J. Kwak, K. Shin, D. Lee, S. Chang, J. Am.
Chem. Soc. 2013, 135, 12861; b) K. Shin, J. Ryu, S.
Chang, Org. Lett. 2014, 16, 2022.
[6] Selected references for pyridone C6 functionalization:
a) Y. Nakao, H. Idei, K. S. Kanyiva, T. Hiyama, J. Am.
Chem. Soc. 2009, 131, 15996; b) R. Tamura, Y.
Yamada, Y. Nakao, T. Hiyama, Angew. Chem. Int. Ed.
2012, 51, 5679; c) P. A. Donets, N. Cramer, Angew.
Chem. Int. Ed. 2015, 54, 633; d) D. Das, A. Biswas, U.
Karmakar, S. Chand, R. Samanta, J. Org. Chem. 2016,
81, 842; (e) P. Peng, J. Wang, H. Jiang, H. Liu, Org.
Lett. 2016, 18, 5376; f) T. Li, Z. Wang, K. Xu, W. Liu,
X. Zhang, W. Mao, Y. Guo, X. Ge, F. Pan, Org. Lett.
[11] CCDC 1576004 (5b) contains the supplementary
crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge
Crystallographic
Data
Centre
via
5
This article is protected by copyright. All rights reserved.