First, the high chemoselectivity of nucleophilic carbenes can
be utilized for protecting group-free synthesis;6 moreover, the
potential to alter the practice of traditional retrosynthetic analysis
is of particular interest.7
An Efficient Carbene-Catalyzed Access to
3,4-Dihydrocoumarins
Kirsten Zeitler* and Christopher A. Rose
Synthetic approaches to lactone derivatives that rely on the
catalytic generation of activated carboxylates or enols via
N-heterocyclic carbene-catalyzed reactions of R-functionalized
aldehydes3d have witnessed impressive and rapid progress in
the past few years.8,9 In connection with our work on NHC-
mediated umpolung reactions,10 we considered application of
nucleophilic carbenes for a catalytic access to coumarin deriva-
tives. Herein, we disclose that o-hydroxycinnamaldehydes
cyclize efficiently in the presence of triazolin-5-ylidene carbenes
to form dihydrocoumarins or, under oxidative conditions, their
unsaturated counterparts in moderate to high yield.
Institut fu¨r Organische Chemie, UniVersita¨t Regensburg,
UniVersita¨tsstrasse 31, D-93053 Regensburg, Germany
ReceiVed October 10, 2008
Dihydrocoumarins play an important role as flavor and
fragrance compounds and can be prepared efficiently from
o-hydroxycinnamaldehydes in a mild, atom-economic
N-heterocyclic carbene-catalyzed redox lactonization. Cor-
responding coumarins are accessible via a one-pot domino
oxidation lactonization procedure in the presence of oxidants.
FIGURE 1. Dihydrocoumarins and coumarins by carbene-catalyzed
extended umpolung lactonization.
Coumarins and dihydrocoumarins present a large class of
natural products that have attracted considerable interest due
to their various biological activities.11 Moreover, coumarins play
an important role as fluorescent materials and as dyes in laser
technology.11c,12 Hence, several conventional methods13 are
available to prepare coumarin derivatives, but most of these
With respect to an increasing need for efficient and new
catalytic synthetic methods, organocatalysis represents a power-
ful field and has found widespread application over the past
decade.1,2 The rapidly growing interest in N-heterocyclic carbene
(NHC)-catalyzed processes might be attributed to the great
versatility of these organocatalytic transformations3 but is also
associated with the possibilities that arise from the NHC’s
characteristic inversion of the classical reactivity, i.e., umpol-
ung.4
(6) (a) Hoffmann, R. W. Synthesis 2006, 3531–3541. (b) Gademann, K.;
Bonazzi, S. Angew. Chem., Int. Ed. 2007, 46, 5656–5658. For two recent
examples, see: (c) Enquist, J. A., Jr.; Stoltz, B. M. Nature 2008, 453, 1228–
1231. (d) Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature 2007, 446, 404–
408.
(7) Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis; Wiley: New
York, 1995.
(8) (a) For examples of NHC-catalyzed preparation of lactones, see the
following. ꢀ-Lactones: Burstein, C.; Tschan, S.; Xie, X.; Glorius, F. Synthesis
2006, 2418–2439. (b) Wadamoto, M.; Phillips, E. M.; Reynolds, T. E.; Scheidt,
K. A. J. Am. Chem. Soc. 2007, 129, 10098–10099. γ-Butyrolactones: (c) Sohn,
S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370–14371.
(d) Glorius, F.; Burstein, C. Angew. Chem., Int. Ed. 2004, 43, 6205–6208. (e)
Ye, W.; Cai, G.; Zhuang, Z.; Jia, X.; Zhai, H. Org. Lett. 2005, 7, 3769–3771.
(f) Nair, V.; Vellalath, S.; Poonoth, M.; Mohan, R.; Suresh, E. Org. Lett. 2006,
8, 507–509. (g) Li, Y.; Zhao, Z.-A.; He, H.; You, S.-L. AdV. Synth. Catal. 2008,
350, 1885–1890. δ-Lactones (in combination with Michael reaction): (h) Phillips,
E. M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007,
46, 3107–3110. δ-Lactones (in combination with Aldol reaction): (i) Tora¨ng, J.;
Vanderheiden, S.; Nieger, M.; Bra¨se, S. Eur. J. Org. Chem. 2007, 943–947.
δ-Lactones via hetero-Diels-Alder reaction: (j) He, M.; Uc, G. J.; Bode, J. W.
J. Am. Chem. Soc. 2006, 128, 15088–15089. (k) He, M.; Beahm, B. J.; Bode,
J. W. Org. Lett. 2008, 10, 3817–3820.
(9) For a different NHC-catalyzed approach to δ-lactones via ketene-derived
zwitterionic enolates, see: Zhang, Y.-R.; Lv, H.; Zhou, D.; Ye, S. Chem.sEur.
J. 2008, 14, 8473–8476.
(10) (a) Zeitler, K. Org. Lett. 2006, 8, 637–640. (b) Zeitler, K.; Mager, I.
AdV. Synth. Catal. 2007, 349, 1851–1857.
(11) (a) Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriate, E. Curr.
Med. Chem. 2005, 12, 887–916. (b) Este´vez-Braun, A.; Gonza´lez, A. G. Nat.
Prod. Rep. 1997, 14, 465–475. (c) O’Kennedy, R.; Thornes, R. D. Coumarins:
Biology, Applications and Mode of Action; Wiley: Chichester, 1997.
(12) Katerinopoulos, H. E. Curr. Pharm. Des. 2004, 10, 3835–3852.
(13) (a) Hepworth, J. D. In ComprehensiVe Heterocyclic Chemistry; Katritzky,
A., Rees, C. W., Boulton, A. J., McKillop, A., Eds.; Pergamon: Oxford, 1984;
Vol. 3, pp 799-810. (b) See also references cited in ref 14a.
Inspired by Nature’s ability to perform nucleophilic acylations
within thiamine-dependent enzymes,5 NHC catalysis merges two
important strategic advantages for efficient synthetic methods.
(1) (a) Berkessel, A.; Gro¨ger, H. Asymmetric Organocatalysis; Wiley-VCH:
Weinheim 2005. (b) Dalko, P. I. EnantioselectiVe Organocatalysis; Wiley-VCH:
Weinheim, 2007.
(2) For some recent reviews on organocatalysis, see: (a) Dondoni, A.; Massi,
A. Angew. Chem., Int. Ed. 2008, 47, 4638–4660. (b) Special issue on
organocatalysis: Chem. ReV. 2007, 107 (12), 5413-5883. (c) Special issue on
organocatalysis: Acc. Chem. Res. 2004, 37 (8), 487-631. (d) Special issue on
organocatalysis: AdV. Synth. Catal. 2004, 346 (9/10), 1007–1249. (e) Dalko,
P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138–5175. (f) Seayad, J.;
List, B. Org. Biomol. Chem. 2005, 3, 719–724.
(3) For recent reviews on NHC-catalyzed reactions, see: (a) Enders, D.;
Niemeier, O.; Henseler, A. Chem. ReV. 2007, 107, 5606–5655. (b) Zeitler, K.
E. Schering Found. Symp. Proc. 2007, 2, 183–206. (c) Marion, N.; D´ıez-
Gonza´lez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988–3000. (d)
Zeitler, K. Angew. Chem., Int. Ed. 2005, 44, 7506–7510. (e) Enders, D.;
Balensiefer, T. Acc. Chem. Res. 2004, 37, 534–541.
(4) Seebach, D. Angew. Chem., Int. Ed. 1979, 18, 239–258.
(5) (a) Kluger, R.; Tittman, K. Chem. ReV. 2008, 108, 1797–1833. (b) Frank,
R. A. W.; Leeper, F. J.; Luisi, B. F. Cell. Mol. Life Sci. 2007, 64, 892–905. (c)
Mu¨ller, M.; Sprenger, G. A. In OxidatiVe Stress and Diseases - Thiamine:
Catalytic Mechanisms and Disease States; Jordan, F., Patel, M. S., Eds.; Marcel
Dekker: New York, 2004; pp 77-90.
10.1021/jo802285r CCC: $40.75
Published on Web 01/26/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 1759–1762 1759