13 O. I. Kolodyazhnyi, D. B. Golokhov and V. P. Kukhar, Zh. Obshch.
C, 65.6; H, 9.6; N, 9.5. C16H27N2OP requires C, 65.3; H, 9.2; N,
9.5%); νmax(KBr)/cmϪ1 2900 and 1160; δH(CDCl3) (E)-isomer:
1.11 (t, 12H, J 7.0, NCH2CH3), 3.04–3.13 (m, 8H, NCH2CH3),
Khim., 1986, 56, 1035.
14 D. S. Chemla and J. Zyss, ‘Nonlinear Optical Properties of Organic
Molecules and Crystals’, Academic Press, Orlando, FL, 1987.
15 ‘Organic Materials for Non-linear Optics’, ed. R. A. Hann and
D. Bloor, Royal Society of Chemistry, Cambridge, UK, 1989.
16 ‘Electrical, Optical, and Magnetic Properties of Organic Solid
State Materials’, ed. A. F. Garito, A. K.-Y. Jen, C. Y.-C. Lee and
L. R. Dalton, MRS, Pittsburgh, PA, 1994.
6.35 (dd, 1H, J 17.4 and 18.3, C᎐CH᎐P) and 7.34–7.53 (m, 6H,
᎐
Ph᎐CH᎐C); m/z (EI) 294 (Mϩ, 16%) and 222 (100).
᎐
X-Ray crystallographic study of 5d
Crystal data. C22H22NO3P, M = 379.39. Orthorhombic, a =
19.611(1), b = 5.745(8), c = 17.667(6) Å, V = 1990(1) Å3 (by
least-squares refinement on diffractometer angles for 25 care-
fully centred reflections in the range 20.41 < 2θ < 29.80Њ,
λ = 0.71069 Å), space group Pca21 (No. 29), Z = 4, Dcalc = 1.266
g cmϪ3, colourless prism 0.62 × 0.22 × 0.12 mm, µ(Mo-Kα) =
17 ‘Electrical, Optical, and Magnetic Properties of Organic Solid
State Materials III ’, ed. A. K.-Y. Jen, C. Y.-C. Lee, L. R. Dalton,
M. F. Rubner, G. E. Wnek and L. Y. Chiang, MRS, Pittsburgh,
PA, 1996.
18 S. M. Risser, D. N. Beratan and S. R. Marder, J. Am. Chem. Soc.,
1993, 115, 7719.
19 A preliminary communication was reported in the Abstract of the
68th National Meeting of the Chemical Society of Japan, Nagoya,
1A406 (1994).
20 H. A. Kurtz, J. J. P. Stewart and K. M. Dieter, J. Comp. Chem., 1990,
11, 82.
21 S. K. Kurz and T. T. Perry, J. Appl. Phys., 1968, 39, 3798.
22 J. F. Nye, ‘Physical Properties of Crystals’, Oxford University Press,
Oxford, UK, 1960.
23 J. Zyss and J. L. Oudar, Phys. Rev. A, 1982, 26, 2028.
24 J. F. Nicoud and R. J. Tweig, ‘Design and Synthesis of Organic
Molecular Compounds for Efficient Second-Harmonic Generation’,
ed. D. S. Chemla and J. Zyss, Academic Press, 1987.
25 G. U. Bublitz, R. Ortiz, S. R. Marder and S. G. Boxer, J. Am. Chem.
Soc., 1997, 119, 3365.
26 G. U. Bublitz, R. Ortiz, C. Runser, A. Fort, M. Barzoukas, S. R.
Marder and S. G. Boxer, J. Am. Chem. Soc., 1997, 119, 2311.
27 S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill,
J.-L. Bredas and B. M. Pierce, Science, 1994, 265, 632.
28 F. Meyers, S. R. Marder, B. M. Pierce and J. L. Bredas, J. Am.
Chem. Soc., 1994, 116, 10 703.
29 C. B. Gorman and S. R. Marder, Proc. Natl. Acad. Sci. USA, 1993,
90, 11 297.
30 V. V. Tkachev, L. O. Atovmyan, B. V. Timokhin, O. A. Bragina,
G. V. Ratovskii and L. M. Sergienko, Zh. Strukt. Khim., 1986, 27,
121.
31 V. R. Pedireddi, J. A. R. P. Sarma and G. R. Desiraju, J. Chem. Soc.,
Perkin Trans. 2, 1992, 311.
32 T. S. Cameron, D. J. Cowley and J. E. Thompson, J. Chem. Soc.,
Perkin Trans. 2, 1974, 774.
33 J. L. Oudar, J. Chem. Phys., 1977, 67, 446.
34 N. Ono, N. Bansho, S. Ito, T. Murashima and T. Ogawa,
J. Heterocyclic Chem., 1997, 34, 1243.
35 M. Matsumoto and K. Kuroda, Tetrahedron Lett., 1980, 21,
4021.
36 S. Akiyama, S. Nakatsuji, K. Yoshida, K. Nakashima, T. Hagiwara,
H. Tsuruta and T. Yoshida, Bull. Chem. Soc. Jpn., 1983, 56, 361.
37 M. K. Loar and J. K. Stille, J. Am. Chem. Soc., 1981, 103, 4174.
38 T. N. Baker, W. P. Dohery, W. S. Kelley, W. Newmeyer, J. E. Rogers,
R. E. Spalding and R. I. Walter, J. Org. Chem., 1965, 30, 3714.
39 G. P. Schiemenz, Chem. Ber., 1966, 99, 504.
40 G. Maas and M. Regitz, Chem. Ber., 1976, 109, 2039.
41 Y. Xu, J. X. G. Huang and Y. Huang, Synthesis, 1983, 556.
42 O. I. Kolodyazhnyi and D. B. Golokhov, Zh. Obshch. Khim., 1987,
57, 2640.
43 A. B. Antonova, A. V. Kovalenko, R. A. Cherkasov, V. V.
Ovchinnikov, A. A. Ioganson, E. D. Korniets and N. A. Deikhiha,
Zh. Obshch. Khim., 1987, 57, 1030.
44 T. Hirao, T. Masunaga, Y. Ohshiro and T. Agawa, Synthesis, 1981,
56.
45 M. Mikolajczyk, S. Grzejszczak, W. Midura and A. Zatorski,
Synthesis, 1976, 396.
46 D. W. Allen, J. Chem. Soc., Perkin Trans. 2, 1977, 789.
47 D. W. Allen, B. G. Hutley and T. J. M. Mellor, J. Chem. Soc., Perkin
Trans. 2, 1972, 63.
48 D. T. Cromer and J. T. Waber, ‘International Tables for X-ray
Crystallography’, The Kynoch Press, Birmingham, England,
1974.
49 J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 1964, 17, 781.
50 TEXSAN–TEXRAY Structure Analysis Package, Molecular
Structure Corporation, 1985, 1992.
1.59 cmϪ1
.
Data collection and processing. A Rigaku AFC5R diffrac-
tometer with graphite-monochromated Mo-Kα radiation was
used: ω Ϫ 2θ scan technique to a maximum 2θ value of 55.0Њ.
Scans of (1.47 ϩ 0.30 tan θ)Њ were made at a speed of 16.0
minϪ1 (in omega). A total of 2669 reflections were collected.
The intensities of three representative reflections which were
measured after every 150 reflections declined by Ϫ1.80%. A
linear correction factor was applied to the data to account
for this phenomenon.
Structure solution and refinement. The structure was solved
by direct methods (SIR92). The non-hydrogen atoms were
refined anisotropically. The final cycle of full-matrix least-
squares refinement was based on 1284 observed reflections
[I > 1.00σ(I)] and 245 variable parameters and converged
(largest parameter shift was 0.01 times its esd). Neutral
atom-scattering factors were taken from Cromer and Waber.48
49
Anomalous dispersion effects were included in Fcalc
;
the
values for ∆f Ј and ∆f Љ were those of Cromer.48 Final R = 0.052,
Rw = 0.055, goodness of fit = 1.10. The final ∆F synthesis
showed no peaks outside the range from Ϫ0.23 to ϩ0.21 e ÅϪ3
.
All the calculations were performed using the TEXSAN50
crystallographic software package of Molecular Structure
Corporation. The ORTEP programmes were used to obtain
Fig. 1.
Full crystallographic details, excluding structure factor
tables, have been deposited at the Cambridge Crystallographic
Data Centre (CCDC). For details of the deposition scheme,
see ‘Instructions for Authors’, J. Chem. Soc., Perkin Trans. 1,
Any request to the CCDC for this material should quote the
full literature citation and the reference number 207/244.
Acknowledgements
We thank the Ministry of Education, Science and Culture
of Japan for financial support of this work by a Grant-in-Aid
for Science and Research (No. 05804038).
References
1 L.-B. Han and M. Tanaka, J. Am. Chem. Soc., 1996, 118, 1571.
2 Y. Xu, M. T. Flavin and Z.-Q. Xu, J. Org. Chem., 1996, 61, 7697.
3 T. Minami and J. Motoyoshiya, Synthesis, 1992, 333.
4 A. Bhattacharya and G. Thyagarajan, Chem. Rev., 1981, 81, 415.
5 T. Ogawa, S. Hotta, K. Hayami and H. Suzuki, Chem. Lett., 1992,
1947.
6 T. Ogawa, T. Kiji, K. Hayami and H. Suzuki, Chem. Lett., 1991,
1443.
7 T. Ogawa, K. Hayami, H. Iyama and H. Suzuki, Chem. Lett., 1990,
937.
8 T. Ogawa, K. Kusumi, M. Tanaka, K. Hayami and H. Suzuki,
Synth. Commun., 1989, 19, 2199.
9 T. Ogawa, K. Hayami and H. Suzuki, Chem. Lett., 1989, 769.
10 O. I. Kolodyazhnyi and D. B. Golokhov, Zh. Obshch. Khim., 1989,
59, 293.
51 J. J. Stewart, QCPE Bull., 1989, 9, 10.
11 M. Fild, R. Fischer and W. Handke, Z. Anorg. Allg. Chem., 1988,
561, 157.
12 M.-P. Teulade and P. Savignac, J. Organomet. Chem., 1986, 304,
283.
Paper 7/09082J
Received 18th December 1997
Accepted 17th July 1998
2958
J. Chem. Soc., Perkin Trans. 1, 1998